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ABSTRACT. In the present paper, which is the second in a series of four pa-
pers, we study the Kummer theory surrounding the Hodge-Arakelov-theoretic eval-
uation — i.e., evaluation in the style of the scheme-theoretic Hodge-Arakelov

theory established by the author in previous papers — of the [reciprocal of the I-
th root of the] theta function at [-torsion points [strictly speaking, shifted by a
suitable 2-torsion point], for [ > 5 a prime number. In the first paper of the series, we
studied “miniature models of conventional scheme theory”, which we referred to as
O+l NF-Hodge theaters, that were associated to certain data, called initial ©-data,
that includes an elliptic curve Er over a number field F', together with a prime num-
ber 1 > 5. The underlying ©-Hodge theaters of these ©F¢!NF-Hodge theaters were
glued to one another by means of “O-links”, that identify the [reciprocal of the I-th
root of the] theta function at primes of bad reduction of Er in one ©*elINF-Hodge
theater with [2I-th roots of] the g-parameter at primes of bad reduction of Ef in an-
other ©F¢INF-Hodge theater. The theory developed in the present paper allows one
to construct certain new versions of this “©-link”. One such new version is the @gxa’ﬁ-
link, which is similar to the ©-link, but involves the theta values at l-torsion points,
rather than the theta function itself. One important aspect of the constructions
that underlie the @ga‘é—link is the study of multiradiality properties, i.e., properties
of the “arithmetic holomorphic structure” — or, more concretely, the ring/scheme
structure — arising from one ©F¢'NF-Hodge theater that may be formulated in
such a way as to make sense from the point of the arithmetic holomorphic structure
of another ©FINF-Hodge theater which is related to the original @°!NF-Hodge
theater by means of the [non-scheme-theoretic!] @;a’fl—link. For instance, certain of
the various rigidity properties of the étale theta function studied in an earlier paper
by the author may be intepreted as multiradiality properties in the context of the
theory of the present series of papers. Another important aspect of the constructions
that underlie the @gxaﬁ—link is the study of “conjugate synchronization” via the
Ffi-symmetry of a ©TINF-Hodge theater. Conjugate synchronization refers to a
certain system of isomorphisms — which are free of any conjugacy indeterminacies!
— between copies of local absolute Galois groups at the various [-torsion points at
which the theta function is evaluated. Conjugate synchronization plays an impor-
tant role in the Kummer theory surrounding the evaluation of the theta function at
[-torsion points and is applied in the study of coricity properties of [i.e., the study of
objects left invariant by] the Ggaﬁ'j—link. Global aspects of conjugate synchronization
require the resolution, via results obtained in the first paper of the series, of certain
technicalities involving profinite conjugates of tempered cuspidal inertia groups.
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Introduction

In the following discussion, we shall continue to use the notation of the In-
troduction to the first paper of the present series of papers [cf. [ITUTchI], §I1]. In
particular, we assume that are given an elliptic curve Er over a number field F,
together with a prime number [ > 5. In the present paper, which forms the sec-
ond paper of the series, we study the Kummer theory surrounding the Hodge-
Arakelov-theoretic evaluation [cf. Fig. 1.1 below] — i.e., evaluation in the
style of the scheme-theoretic Hodge-Arakelov theory of [HASurl], [HASurll] — of
the reciprocal of the l-th root of the theta function
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[cf. [EtTh], Proposition 1.4; [IUTchl], Example 3.2, (ii)] at I-torsion points
[strictly speaking, shifted by a suitable 2-torsion point| in the context of the theory
of ©*°'NF-Hodge theaters developed in [[UTchI]. Here, relative to the notation
of [IUTchI], 8§11, v € yhad, ¢y denotes the g-parameter at v of the given elliptic
curve B over a number field F; U, denotes the standard multiplicative coordinate
on the Tate curve obtained by localizing Er at v. Let ¢ be a 2I-th root of g,.

Then these “theta values at [-torsion points” will, up to_a factor given by a 2I-th
root of unity, turn out to be of the form [cf. Remark 2.5.1, (i)]

2

J

Ey
[Frobenius-like!] Kummer [étale-like!]
Frobenioid-theoretic Galois-theoretic étale
theta function | 77 theta function
evalu- || ation N evalu- || ation
[Frobenius-like!] Kummer [étale-like!]
Frobenioid-theoretic Galois-theoretic

theta values theta values

Fig. I.1: The Kummer theory surrounding Hodge-Arakelov-theoretic evaluation
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— where j € {0,1,...,1% et (I —1)/2}, so j is uniquely determined by its image

j € |Fy| 2o F;/{x1} = {0} U F;* [cf. the notation of [[UTchI], §I1].

In order to understand the significance of Kummer theory in the context
of Hodge-Arakelov-theoretic evaluation, it is important to recall the notions of
“Frobenius-like” and “étale-like” mathematical structures [cf. the discussion of
[IUTchlI], §I1]. In the present series of papers, the Frobenius-like structures consti-
tuted by [the monoidal portions of]| Frobenioids — i.e., more concretely, by various
monoids — play the important role of allowing one to construct gluing isomor-
phisms such as the ©-link which lie outside the framework of conventional
scheme/ring theory [cf. the discussion of [IUTchI|, §12]. Such gluing isomor-
phisms give rise to Frobenius-pictures [cf. the discussion of [IUTchI|, §I1]. On
the other hand, the étale-like structures constituted by various Galois and arith-
metic fundamental groups give rise to the canonical splittings of such Frobenius-
pictures furnished by corresponding étale-pictures [cf. the discussion of [IUTchI],
§I1]. In [IUTchIII], absolute anabelian geometry will be applied to these Galois
and arithmetic fundamental groups to obtain descriptions of alien arithmetic
holomorphic structures, i.e., arithmetic holomorphic structures that lie on the
opposite side of a ©-link from a given arithmetic holomorphic structure [cf. the
discussion of [IUTchI], §13]. Thus, in light of the equally crucial but substantially
different roles played by Frobenius-like and étale-like structures in the present series
of papers, it is of crucial importance to be able

to relate corresponding Frobenius-like and étale-like versions of vari-
ous objects to one another.

This is the role played by Kummer theory. In particular, in the present paper,
we shall study in detail the Kummer theory that relates Frobenius-like and étale-
like versions of the theta function and its theta values at [-torsion points to one
another [cf. Fig. 1.1].

One important notion in the theory of the present paper is the notion of mul-
tiradiality. To understand this notion, let us recall the étale-picture discussed
in [IUTchI], §I1 [c¢f. [IUTchI], Fig. I1.6]. In the context of the present paper, we
shall be especially interested in the étale-like version of the theta function and its
theta values constructed in each D-O*°!NF-Hodge theater (_)HTD‘@ieHNF; thus,
one can think of the étale-picture under consideration as consisting of the diagram
given in Fig. 1.2 below. As discussed earlier, we shall ultimately be interested in
applying various absolute anabelian reconstruction algorithms to the various arith-
metic fundamental groups that [implicitly] appear in such étale-pictures in order
to obtain descriptions of alien holomorphic structures, i.e., descriptions of objects
that arise on one “spoke” [i.e., “arrow emanating from the core”] that make sense
from the point of view of another spoke. In this context, it is natural to classify the
various algorithms applied to the arithmetic fundamental groups lying in a given
spoke as follows [cf. Example 1.7]:

We shall refer to an algorithm as coric if it in fact only depends on
input data arising from the mono-analytic core of the étale-picture, i.e.,
the data that is common to all spokes.
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We shall refer to an algorithm as uniradial if it expresses the objects
constructed from the given spoke in terms that only make sense within
the given spoke.

- We shall refer to an algorithm as multiradial if it expresses the objects
constructed from the given spoke in terms of corically constructed objects,
i.e., objects that make sense from the point of view of other spokes.

Thus, multiradial algorithms are compatible with simultaneous execution at
multiple spokes [cf. Example 1.7, (v); Remark 1.9.1], while uniradial algorithms may
only be consistently executed at a single spoke. Ultimately, in the present series of
papers, we shall be interested — relative to the goal of obtaining “descriptions of
alien holomorphic structures” — in the establishment of multiradial algorithms for
constructing the objects of interest, e.g., [in the context of the present paper| the
étale-like versions of the theta functions and the corresponding theta values
discussed above. Typically, in order to obtain such multiradial algorithms, i.e.,
algorithms that make sense from the point of view of other spokes, it is necessary
to allow for some sort of “indeterminacy” in the descriptions that appear in the
algorithms of the objects constructed from the given spoke.

étale-like version of

9, {g% 1

étale-like version of étale-like version of
jz (—)@F j2
le {gi } - Qlﬂ {gz }

étale-like version of

9, {g% }

Fig. 1.2: Etale-picture of étale-like versions of theta functions, theta values

Relative to the analogy between the inter-universal Teichmiiller theory of the
present series of papers and the classical theory of holomorphic structures on
Riemann surfaces [cf. the discussion of [IUTchl], §I4], one may think of coric
algorithms as corresponding to constructions that depend only on the underlying
real analytic structure on the Riemann surface. Then uniradial algorithms cor-
respond to constructions that depend, in an essential way, on the holomorphic
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structure of the given Riemann surface, while multiradial algorithms correspond
to constructions of holomorphic objects associated to the Riemann surface which
are expressed [perhaps by allowing for certain indeterminacies!] solely in terms of
the underlying real analytic structure of the Riemann surface — cf. Fig. 1.3
below; the discussion of Remark 1.9.2. Perhaps the most fundamental motivat-
ing example in this context is the description of “alien holomorphic structures” by
means of the Teichmiiller deformations reviewed at the beginning of [IUTchI],
§14, relative to “unspecified /indeterminate” deformation data [i.e., consisting
of a nonzero square differential and a dilation factor]. Indeed, for instance, in the
case of once-punctured elliptic curves, by applying well-known facts concerning Te-
ichmiiller mappings [cf., e.g., [Lehto], Chapter V, Theorem 6.3], it is not difficult
to formulate the classical result that

“the homotopy class of every orientation-preserving homeomorphism be-
tween pointed compact Riemann surfaces of genus one ‘lifts’ to a unique
Teichmiiller mapping”

in terms of the “multiradial formalism” discussed in the present paper [cf. Example
1.7]. [We leave the routine details to the reader.]

abstract inter-universal classical complex
algorithms Teichmiller theory Teichmaller theory
uniradial arithmetic holomorphic holomorphic
algorithms structures structures
arithmetic holomorphic holomorphic
multiradial structures described in structures described in
algorithms terms of underlying terms of underlying
mono-analytic structures real analytic structures
coric underlying mono-analytic underlying real analytic
algorithms structures structures

Fig. 1.3: Uniradiality, Multiradiality, and Coricity

One interesting aspect of the theory of the present series of papers may be seen
in the set-theoretic function arising from the theta values considered above

2
. J
J =&

= =v
— a function that is reminiscent of the Gaussian distribution (R 3) z —
e~ on the real line. From this point of view, the passage from the Frobenius-
picture to the canonical splittings of the étale-picture [cf. the discussion of [[UTchI],
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§I1], i.e., in effect, the computation of the O-links that occur in the Frobenius-
picture by means of the various multiradial algorithms that will be established in
the present series of papers, may be thought of [cf. the diagram of Fig. 1.2!]] as a
sort of global arithmetic/Galois-theoretic analogue of the computation of the
classical Gaussian integral

/ e dp = NZs

via the passage from cartesian coordinates, i.e., which correspond to the Frobenius-
picture, to polar coordinates, i.e., which correspond to the étale-picture — cf.
the discussion of Remark 1.12.5.

One way to understand the difference between coricity, multiradiality, and
uniradiality at a purely combinatorial level is by considering the ]Fl*- and Ffi-
symmetries discussed in [IUTchI], §I1 [cf. the discussion of Remark 4.7.4 of the
present paper|. Indeed, at a purely combinatorial level, the Fl*—symmetry may be
thought of as consisting of the natural action of F;* on the set of labels |F;| =
{0} U F; [cf. the discussion of [IUTchI], §I1]. Here, the label 0 corresponds to
the /mono-analytic] core. Thus, the corresponding étale-picture consists of various
copies of || glued together along the coric label O [cf. Fig. 1.4 below]. In particular,
the various actions of copies of F}* on corresponding copies of |F;| are “compatible
with simultaneous execution” in the sense that they commute with one another.
That is to say, at least at the level of labels, the F/*-symmetry is multiradial.

N
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Fig. 1.5: Etale-picture of F,'*-symmetries
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In a similar vein, at a purely combinatorial level, the Ffi—symmetry may be thought
of as consisting of the natural action of F ;“i on the set of labels F; [cf. the discussion
of [IUTchl], §I1]. Here again, the label O corresponds to the /mono-analytic] core.
Thus, the corresponding étale-picture consists of various copies of IF; glued together
along the coric label 0 [cf. Fig. 1.5 above]. In particular, the various actions of
copies of Ffi on corresponding copies of F; are “incompatible with simultaneous
execution” in the sense that they clearly fail to commute with one another. That is
to say, at least at the level of labels, the Ffi-symmetry is uniradial.

Since, ultimately, in the present series of papers, we shall be interested in the
establishment of multiradial algorithms, “special care” will be necessary in order
to obtain multiradial algorithms for constructing objects related to the a prior:
uniradial Ffi-symmetry [cf. the discussion of Remark 4.7.3 of the present paper;
[[UTchIII], Remark 3.11.2, (i), (ii)]. The multiradiality of such algorithms will be
closely related to the fact that the Ffi—symmetry is applied to relate the various
copies of local units modulo torsion, i.e., “O**” [cf. the notation of [IUTchI],
§1] at various labels € IF; that lie in various spokes of the étale-picture [cf. the
discussion of Remark 4.7.3, (ii)]. This contrasts with the way in which the a pri-
ori multiradial Fl* -symmetry will be applied, namely to treat various “weighted
volumes” corresponding to the local value groups and global realified Frobenioids
at various labels € ]Fl* that lie in various spokes of the étale-picture [cf. the dis-
cussion of Remark 4.7.3, (iii)]. Relative to the analogy between the theory of the
present series of papers and p-adic Teichmiiller theory [cf. [IUTchI], §14], various
aspects of the Ffi-symmetry are reminiscent of the additive monodromy over
the ordinary locus of the canonical curves that occur in p-adic Teichmiiller the-
ory; in a similar vein, various aspects of the F;*-symmetry may be thought of as
corresponding to the multiplicative monodromy at the supersingular points of
the canonical curves that occur in p-adic Teichmiiller theory — cf. the discussion
of Remark 4.11.4, (iii); Fig. 1.7 below.

Before discussing the theory of multiradiality in the context of the theory
of Hodge-Arakelov-theoretic evaluation theory developed in the present paper, we
pause to review the theory of mono-theta environments developed in [EtTh].
One starts with a Tate curve over a mixed-characteristic nonarchimedean local
field. The mono-theta environment associated to such a curve is, roughly speak-
ing, the Kummer-theoretic data that arises by extracting N-th roots of the theta
trivialization of the ample line bundle associated to the origin over suitable tem-
pered coverings of the curve [cf. [EtTh], Definition 2.13, (ii)]. Such mono-theta
environments may be constructed purely group-theoretically from the [arithmetic/
tempered fundamental group of the once-punctured elliptic curve determined by the
given Tate curve [cf. [EtTh], Corollary 2.18|, or, alternatively, purely category-
theoretically from the tempered Frobenioid determined by the theory of line bundles
and divisors over tempered coverings of the Tate curve [cf. [EtTh], Theorem 5.10,
(iii)]. Indeed, the isomorphism of mono-theta environments between the mono-
theta environments arising from these two constructions of mono-theta environ-
ments — i.e., from tempered fundamental groups, on the one hand, and from tem-
pered Frobenioids, on the other [cf. Proposition 1.2 of the present paper] — may be
thought of as a sort of Kummer isomorphism for mono-theta environments
[cf. Proposition 3.4 of the present paper, as well as [[UTchIII], Proposition 2.1,
(iii)]. One important consequence of the theory of [EtTh] asserts that mono-theta
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environments satisfy the following three rigidity properties:

(a) cyclotomic rigidity,
(b) discrete rigidity, and
(c) constant multiple rigidity

— cf. the Introduction to [EtTh].

Discrete rigidity assures one that one may work with Z-translates [where we
write Z for the copy of “Z” that acts as a group of covering transformatlons on the
tempered coverings involved], as opposed to Z translates [i.e., where Z 7 denotes
the profinite completion of Z], of the theta function, i.e., one need not contend
with z—powers of canonical multiplicative coordinates [i.e., “U”], or q-parameters
[cf. Remark 3.6.5, (iii); [[UTchIII], Remark 2.1.1, (v)]. Although we will certainly
“use” this discrete rigidity throughout the theory of the present series of papers,
this property of mono-theta environments will not play a particularly prominent
role in the theory of the present series of papers. The Z- powers of “U” and “q” that
would occur if one does not have discrete rigidity may be compared to the PD-
formal series that are obtained, a priori, if one attempts to construct the canonical
parameters of p-adic Teichmiiller theory via formal integration. Indeed, PD-formal
power series become necessary if one attempts to treat such canonical parameters
as objects which admit arbitrary O- -powers, where O denotes the completion of the
local ring to which the canonical parameter belongs [cf. the discussion of Remark

3.6.5, (iii); Fig. 1.6 below].

Constant multiple rigidity plays a somewhat more central role in the
present series of papers, in particular in relation to the theory of the log-link, which
we shall discuss in [IUTchIII] [cf. the discussion of Remark 1.12.2 of the present
paper; [IUTchIII], Remark 1.2.3, (i); [IUTchIII], Proposition 3.5, (ii); [IUTchIII],
Remark 3.11.2, (iii)]. Constant multiple rigidity asserts that the multiplicative
monoid

0%, - e,
— which we shall refer to as the theta monoid — generated by the reciprocal
of the l-th root of the theta function and the group of units of the ring of inte-
gers of the base field I, [cf. the notation of [IUTchI], §I1] admits a canonical
splitting, up to 2I/-th roots of unity, that arises from evaluation at the [2-/torsion
point corresponding to the label 0 € F; [cf. Corollary 1.12, (ii); Proposition 3.1,
(i); Proposition 3.3, (i)]. Put another way, this canonical splitting is the splitting
determined, up to 2/-th roots of unity, by gv € (9% . QT The theta monoid of

the above display, as well as the associated canonical splitting, may be constructed
algorithmically from the mono-theta environment [cf. Proposition 3.1, (i)]. Rela-
tive to the analogy between the theory of the present series of papers and p-adic
Teichmiiller theory, these canonical splittings may be thought of as corresponding
to the canonical coordinates of p-adic Teichmaller theory, i.e., more precisely,
to the fact that such canonical coordinates are also completely determined without
any constant multiple indeterminacies — cf. Fig. 1.6 below; Remark 3.6.5, (iii);
[IUTchIII], Remark 3.12.4, (i).
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Mono-theta-theoretic rigidity property
in_inter-universal Teichmiller theory

Corresponding phenomenon in
p-adic Teichmdiller theory

momno-theta-theoretic
constant
multiple
rigidity

lack of constant multiple
indeterminacy of
canonical coordinates
on canonical curves

mono-theta-theoretic
cyclotomic
rigidity

lack of 7> -power indeterminacy
of canonical coordinates
on canonical curves,
Kodaira-Spencer
isomorphism

multiradiality of
mono-theta-theoretic
constant multiple,
cyclotomic
rigidity

Frobenius-invariant
nature of
canonical coordinates

mono-theta-theoretic
discrete
rigidity

formal = “non-PD-formal”
nature of canonical coordinates
on canonical curves

Fig. 1.6: Mono-theta-theoretic rigidity properties in inter-universal Teichmiiller

theory and corresponding phenomena in p-adic Teichmiiller theory

Cyclotomic rigidity consists of a rigidity isomorphism, which may be con-

structed algorithmically from the mono-theta environment, between

- the portion of the mono-theta environment — which we refer to as the
exterior cyclotome — that arises from the roots of unity of the base

field and

a certain copy of the once-Tate-twisted Galois module “2(1)” — which
we refer to as the interior cyclotome — that appears as a subquotient
of the geometric tempered fundamental group

[cf. Definition 1.1, (ii); Remark 1.1.1; Proposition 1.3, (i)]. This rigidity is remark-
able — as we shall see in our discussion below of the corresponding multiradiality
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property — in that unlike the “conventional” construction of such cyclotomic rigid-
ity isomorphisms via local class field theory [cf. Proposition 1.3, (ii)], which requires
one to use the entire monoid with Galois action G, ~ O% , the only portion of

the monoid (9% that appears in this construction is the port?on [i.e., the “exterior

cyclotome”] cor_responding to the torsion subgroup (9% C (9% [cf. the notation

v

of [TUTchI], §I1]. This construction depends, in an essential way, on the com-
mutator structure of theta groups, but constitutes a somewhat different approach
to utilizing this commutator structure from the “classical approach” involving irre-
ducibility of representations of theta groups [cf. Remark 3.6.5, (ii); the Introduction
to [EtTh]]. One important aspect of this dependence on the commutator structure
of the theta group is that the theory of cyclotomic rigidity yields an explanation
for the importance of the special role played by the first power of [the reciprocal
of the l-th root of] the theta function in the present series of papers [cf. Remark
3.6.4, (iii), (iv), (v); the Introduction to [EtTh]]. Relative to the analogy between
the theory of the present series of papers and p-adic Teichmiiller theory, mono-
theta-theoretic cyclotomic rigidity may be thought of as corresponding either to
the fact that the canonical coordinates of p-adic Teichmiiller theory are completely
determined without any 7> -power indeterminacies or [roughly equivalently]| to the

Kodaira-Spencer isomorphism of the canonical indigenous bundle — cf. Fig.
1.6; Remark 3.6.5, (iii); Remark 4.11.4, (iii), (b).

The theta monoid
ox . eV

Fy v

discussed above admits both étale-like and Frobenius-like [i.e., Frobenioid-theo-
retic| versions, which may be related to one another via a Kummer isomorphism
[cf. Proposition 3.3, (i)]. The unit portion, together with its natural Galois action,
of the Frobenioid-theoretic version of the theta monoid

X
Gy ™~ OE

forms the portion at v € VP of the F™*-prime-strip “S;lf)d” that is preserved,

up to isomorphism, by the ©-link [cf. the discussion of [IUTchlI], §I1; [IUTchI],
Theorem A, (ii)]. In the theory of the present paper, we shall introduce modified
versions of the ©-link of [IUTchI] [cf. the discussion of the “©*¥-, ©zh-links”

below|, which, unlike the ©-link of [IUTchI], only preserve [up to isomorphism| the
FXk_prime-strips — i.e., which consist of the data

Xpo % 7
Gy ~ OFF = 0% JOk

[cf. the notation of [IUTchI], §I1] at v € V** — associated to the F™*-prime-
strips preserved [up to isomorphism] by the ©-link of [TUTchI]. Since this data is
only preserved up to isomorphism, it follows that the topological group “G\,” must

be regarded as being only known up to isomorphism, while the monoid O%“ must be

v

regarded as being only known up to [the automorphisms of this monoid determined
by the natural action of] Z*. That is to say, one must regard

the data G, ~ (’)%"" as subject to Aut(Gy)-, Z*-indeterminacies.
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These indeterminacies will play an important role in the theory of the present series
of papers — cf. the indeterminacies “(Ind1)”, “(Ind2)” of [[UTchIII], Theorem 3.11,

(i).

Now let us return to our discussion of the various mono-theta-theoretic rigidity
properties. The key observation concerning these rigidity properties, as reviewed
above, in the context of the Aut(Gy)-, Z*-indeterminacies just discussed, is the
following;:

the canonical splittings, via “evaluation at the zero section”, of the theta
monoids, together with the construction of the mono-theta-theoretic
cyclotomic rigidity isomorphism, are compatible with, in the sense

that they are left unchanged by, the Aut(Gy)-, Z*-indeterminacies dis-
cussed above

— cf. Corollaries 1.10, 1.12; Proposition 3.4, (i). Indeed, this observation consti-
tutes the substantive content of the multiradiality of mono-theta-theoretic con-
stant multiple/cyclotomic rigidity [cf. Fig. 1.6] and will play an important role
in the statements and proofs of the main results of the present series of papers
[cf. [IUTchIII], Theorem 2.2; [IUTchIII], Corollary 2.3; [IUTchIII], Theorem 3.11,
(iii), (c); Step (ii) of the proof of [IUTchIII], Corollary 3.12]. At a technical level,
this “key observation” simply amounts to the observation that the only portion of
the monoid O% that is relevant to the construction of the canonical splittings and

v

cyclotomic rigiciity tsomorphism under consideration is the torsion subgroup (9% ,

which [by definition!] maps to the identity element of (9%” , hence is immune to

v

the various indeterminacies under consideration. That is to say, the multiradiality
of mono-theta-theoretic constant multiple/cyclotomic rigidity may be regarded as
an essentially formal consequence of the triviality of the natural homomorphism

© X
OF — Of

v v

[cf. Remark 1.10.2].

After discussing, in §1, the multiradiality theory surrounding the various rigid-
ity properties of the mono-theta environment, we take up the task, in §2 and §3, of
establishing the theory of Hodge-Arakelov-theoretic evaluation, i.e., of passing
[for v € VP24

.2
0% O - X (LY, .
from theta monoids as discussed above [i.e., the monoids on the left-hand side of
the above display] to Gaussian monoids [i.e., the monoids on the right-hand side
of the above display| by means of the operation of “evaluation” at I-torsion points.
Just as in the case of theta monoids, Gaussian monoids admit both étale-like ver-
sions, which constitute the main topic of §2, and Frobenius-like [i.e., Frobenioid-
theoretic| versions, which constitute the main topic of §3. Moreover, as discussed at
the beginning of the present Introduction, it is of crucial importance in the theory
of the present series of papers to be able to relate these étale-like and Frobenius-like
versions to one another via Kummer theory. One important observation in this
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context — which we shall refer to as the “principle of Galois evaluation” — is
the following: it is essentially a tautology that

this requirement of compatibility with Kummer theory forces any sort
of “evaluation operation” to arise from restriction to Galois sections of
the [arithmetic] tempered fundamental groups involved

[i.e., Galois sections of the sort that arise from rational points such as I[-torsion
points!] — cf. the discussion of Remarks 1.12.4, 3.6.2. This tautology is interesting
both in light of the history surrounding the Section Conjecture in anabelian geom-
etry [cf. [IUTchI], §I5] and in light of the fact that the theory of [SemiAnbd] that is
applied to prove [ITUTchI|, Theorem B — a result which plays an important role in
the theory of §2 of the present paper! [cf. the discussion below] — may be thought
of as a sort of “Combinatorial Section Conjecture”.

At this point, we remark that, unlike the theory of theta monoids discussed
above, the theory of Gaussian monoids developed in the present paper does not,
by itself, admit a multiradial formulation [cf. Remarks 2.9.1, (iii); 3.4.1, (ii); 3.7.1].
In order to obtain a multiradial formulation of the theory of Gaussian monoids —
which is, in some sense, the ultimate goal of the present series of papers! — it
will be necessary to combine the theory of the present paper with the theory of
the log-link developed in [IUTchIII]. This will allow us to obtain a multiradial
formulation of the theory of Gaussian monoids in [IUTchIII], Theorem 3.11.

One important aspect of the theory of Hodge-Arakelov-theoretic evaluation is
the notion of conjugate synchronization. Conjugate synchronization refers to a
collection of “symmetrizing isomorphisms” between the various copies of the local
absolute Galois group G, associated to the labels € [F; at which one evaluates the
theta function [cf. Corollaries 3.5, (i); 3.6, (i); 4.5, (iii); 4.6, (iii)]. We shall also
use the term “conjugate synchronization” to refer to similar collections of “sym-
metrizing isomorphisms” for copies of various objects [such as the monoid OD ]

closely related to the absolute Galois group G,. With regard to the collections of
isomorphisms between copies of G, it is of crucial importance that these isomor-
phisms be completely well-defined, i.e., without any conjugacy indeterminacies!
Indeed, if one allows conjugacy indeterminacies [i.e., put another way, if one allows
oneself to work with outer isomorphisms, as opposed to isomorphisms|, then one
must sacrifice either

the distinct nature of distinct labels € |F;| — which is necessary in
2

order to keep track of the distinct theta values “gi 7 for distinct j — or

- the crucial compatibility of étale-like and Frobenius-like versions of the
symmetrizing isomorphisms with Kummer theory

— cf. the discussion of Remark 3.8.3, (ii); [IUTchIII], Remark 1.5.1; Step (vii)
of the proof of [TUTchIII|, Corollary 3.12. In this context, it is also of interest to
observe that it follows from certain elementary combinatorial considerations that
one must require that
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- these symmetrizing isomorphisms arise from a group action, i.e., such
as the F,'*-symmetry

— cf. the discussion of Remark 3.5.2. Moreover, since it will be of crucial impor-
tance to apply these symmetrizing isomorphisms, in [IUTchIII], §1 [cf., especially,
[IUTchIII], Remark 1.3.2], in the context of the log-link — whose definition de-
pends on the local ring structures at v € V"* [cf. the discussion of [AbsToplII],
§I13] — it will be necessary to invoke the fact that

. the symmetrizing isomorphisms at v € V°*? arise from conjugation op-
erations within a certain [arithmetic] tempered fundamental group
— namely, the tempered fundamental group of X, [cf. the notation of
[IUTchI], §I1] — that contains II, as an open subgroup of finite index

— cf. the discussion of Remark 3.8.3, (ii). Here, we note that these “conjugation
operations” related to the ]Ffi—symmetry may be applied to establish conjugate
synchronization precisely because they arise from conjugation by elements of the
geometric tempered fundamental group [cf. Remark 3.5.2, (iii)].

The significance of establishing conjugate synchronization — i.e., subject
to the various requirements discussed above! — lies in the fact that the resulting
symmetrizing isomorphisms allow one to

construct the crucial coric F~*H-prime-strips

— i.e., the FF*H_prime-strips that are preserved, up to isomorphism, by the modi-
fied versions of the ©-link of [[UTchI] |cf. the discussion of the “©*#-, © h -links”
below]| that are introduced in §4 of the present paper [cf. Corollary 4.10, (i), (iv);
[IUTchIII], Theorem 1.5, (iii); the discussion of [IUTchIII], Remark 1.5.1, (i)].

In §4, the theory of conjugate synchronization established in §3 [cf. Corollaries
3.5, (); 3.6, ()] is extended so as to apply to arbitrary v € V, i.e., not just v € Y
[cf. Corollaries 4.5, (iii); 4.6, (iii)]. In particular, in order to work with the theta
value labels € F; in the context of the Ffi-symmetry, i.e., which involves the
action
I

on the labels € F;, one must avail oneself of the global portion of the ©%°'-Hodge
theaters that appear. Indeed, this global portion allows one to synchronize the a
priori independent indeterminacies with respect to the action of {+1} on the
various X [for v € yhad], X [forve Veood] — ¢f. the discussion of Remark 4.5.3,

(iii). On the other hand, the copy of the arithmetic fundamental group of X x that
constitutes this global portion of the @*°'“-Hodge theater is profinite, i.e., it does
not admit a “globally tempered version” whose localization at v € yPad ig naturally
isomorphic to the corresponding tempered fundamental group at v. One important
consequence of this state of affairs is that

in order to apply the global +-synchronization afforded by the ©%¢Il
Hodge theater in the context of the theory of Hodge-Arakelov-theoretic
evaluation at v € ybad relative to labels € F; that correspond to conju-
gacy classes of cuspidal inertia groups of tempered fundamental groups at
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v E ybad, it is necessary to compute the profinite conjugates of such
tempered cuspidal inertia groups

— cf. the discussion of [IUTchl], Remark 4.5.1, as well as Remarks 2.5.2 and 4.5.3,
(iii), of the present paper, for more details. This is precisely what is achieved by
the application of [[UTchI], Theorem B [i.e., in the form of [[UTchI], Corollary 2.5;
cf. also [ITUTchI], Remark 2.5.2] in §2 of the present paper.

As discussed above, the theory of Hodge-Arakelov-theoretic evaluation devel-
oped in §1, §2, §3 is strictly local [at v € V"] in nature. Thus, in §4, we discuss
the essentially routine extensions of this theory, e.g., of the theory of Gaussian
monoids, to the “remaining portion” of the ©*°'-Hodge theater, i.e., to v € V&°°4,
as well as to the case of global realified Frobenioids [cf. Corollaries 4.5, (iv), (v); 4.6,
(iv), (v)]. We also discuss the corresponding complements, involving the theory of
[[UTchI], §5, for ONF-Hodge theaters [cf. Corollaries 4.7, 4.8]. This leads naturally
to the construction of modified versions of the ©-link of [IUTchI] [cf. Corollary
4.10, (iii)]. These modified versions may be described as follows:

- The ©*F-link is essentially the same as the O-link of [IUTchl], Theorem
A, except that F'"-prime-strips are replaced by F'"»*¥-prime-strips [cf.
[IUTchl], Fig. 11.2] — i.e., roughly speaking, the various local “O*” are
replaced by “O*H* = O* /OF”.

- The O f:-link is essentially the same as the ©*#-link, except that the
theta monoids that give rise to the © *#-link are replaced, via composition
with a certain isomorphism that arises from Hodge- Arakelov-theoretic eval-
uation, by Gaussian monoids [cf. the above discussion!] — i.e., roughly

.2
speaking, the various “© " at v € VP24 are replaced by “{qi Yiz1, %
=2, ERRE)

The basic properties of the ©*#-, © 2k -links, including the corresponding Frobenius-
and étale-pictures, are summarized in Theorems A, B below [cf. Corollaries 4.10,
4.11 for more details]. Relative to the analogy between the theory of the present
series of papers and p-adic Teichmiiller theory, the passage from the ©@*H-link to
the Ok -link via Hodge-Arakelov-theoretic evaluation may be thought of as
corresponding to the passage

MFV-objects ~» Galois representations

in the case of the canonical indigenous bundles that occur in p-adic Teichmiiller
theory — cf. the discussion of Remark 4.11.4, (ii), (iii). In particular, the corre-
sponding passage from the Frobenius-picture associated to the ©*#-link to the
Frobenius-picture associated to the @ga’fl—link — or, more properly, relative to the
point of view of [IUTchIII] [cf. also the discussion of [IUTchI], §I4], from the
log-theta-lattice arising from the ©*#-link to the log-theta-lattice arising from the
O fi-link — corresponds [i.e.., relative to the analogy with p-adic Teichmiiller the-
ory| to the passage

from thinking of canonical liftings as being determined by canonical
MFV-objects to thinking of canonical liftings as being determined by
canonical Galois representations [cf. Fig. 1.7 below].
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In this context, it is of interest to note that this point of view is precisely the
point of view taken in the absolute anabelian reconstruction theory developed in
[CanLift], §3 [cf. Remark 4.11.4, (iii), (a)]. Finally, we observe that from this
point of view, the important theory of conjugate synchronization via the Ffi—
symmetry may be thought of as corresponding to the theory of the deformation
of the canonical Galois representation from “mod p™” to “mod p™*™1” [cf. Fig. 1.7
below; the discussion of Remark 4.11.4, (iii), (d)].

Property related to Corresponding phenomenon
Hodge-Arakelov-theoretic m
evaluation in inter-universal p-adic Teichmaller theory
Teichmiiller theory
passage from passage from
O*#¥-link canonicality via MFY -objects
to to canonicality via
O hi-link crystalline Galois representations
Ffi—, F}*- ordinary, supersingular monodromy
symmetries of canonical Galois representation
conjugate deformation of
synchronization canonical Galois representation
via F)'* -symmetry from “mod p™” to “mod p"T1”

Fig. 1.7: Properties related to Hodge-Arakelov-theoretic evaluation in
inter-universal Teichmiiller theory and corresponding phenomena in
p-adic Teichmiiller theory

Certain aspects of the various constructions discussed above are summarized
in the following two results, i.e., Theorems A, B, which are abbreviated versions
of Corollaries 4.10, 4.11, respectively. On the other hand, many important aspects
— such as multiradiality! — of these constructions do not appear explicitly in
Theorems A, B. The main reason for this is that it is difficult to formulate “final
results” concerning such aspects as multiradiality in the absence of the framework
that is to be developed in [IUTchIII].

Theorem A. (Frobenius-pictures of ©*°'NF-Hodge Theaters) Fir a col-
lection of initial ©-data (F/F, Xf, |, Oy, V, VP34 " ¢) asin [IUTchI], Definition

mod’

3.1. Let T’;‘-[7’6j[enl\lF; i’;‘-l’TGieul\IF be OF'NF-Hodge theaters [relative to the
given initial ©-data] — cf. [IUTchl], Definition 6.13, (i). Write THTD_@ieuNF;
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t947P-6*'NF for the associated D-OT*'"NF-Hodge theaters — cf. [IUTchl],
Definition 6.13, (ii). Then:

(i) (Constant Prime-Strips) By applying the symmetrizing isomorphisms,
with respect to the Fl”i-symmetry, of Corollary 4.6, (iii), to the data of the un-

+e
derlying ©*° -Hodge theater of THT® 'NF yhat is labeled by t € LabCusp™ (1D, ),
one may construct, in a natural fashion, an F'" -prime-strip

I8 = (fck, Prime('CR) = V, "84, {Tpau}vev)

that is equipped with a natural identification isomorphism of F'"-prime-strips
TSZ 5 TS'I;Od between TS' and the F" -prime-strip 13" . of [IUTchI], Theorem
A, (ii); this isomorphism induces a natural identification isomorphism of D" -
prime-strips T’DZ = T@; between the D" -prime-strip T’DZ associated to TS"Z and
the D" -prime-strip "% of [IUTchI], Theorem A, (iii).

mod

(ii) (Theta and Gaussian Prime-Strips) By applying the constructions
of Corollary 4.6, (iv), (v), to the underlying ©-bridge and ©*'-Hodge theater of

+ell . . : 1
FH 7O N one may construct, in a natural fashion, F"-prime-strips

T%’env = (Tcg;wv PI‘lHlG(TCle:V) = v, genv7 {Tpenv,g}QEY)

ngau = (Tclg'_au? Prlme(Tclgi_au) _> V ngau’ {Tpgau,y}QEY)

that are equipped with ¢ natural identification isomorphism of F'" -prime-strips
Tgh . = 8L, between TFY . and the F" -prime-strip 1§\, of [[UTchI], Theorem
A, (ii), as well as an evaluation isomorphism

~

Tgenv - ngau
of F"-prime-strips.

(iii) (©*#- and @gau-Llnks) Write iSA”(” (respectively, TF!»<H Tglwxu)

env

for the F™>*k_prime-strip associated to the F'™-prime-strip 13 (respectively,

LK gau) We shall refer to the full poly-isomorphism Tgr»xkr =5 i%"g’x“ as

the ©*H-link . o .
g TO*INE  O7K g reiNg

[cf. the “O-link” of [IUTchl], Theorem A, (ii)] from P TOTINE 4 iHTQieHNF,

and to the full poly-isomorphism nga;x“ = i%'g’x“ — which may be regarded as

~

being obtained from the full poly-isomorphism T »>k = iS'Z’X“ by composition
with the inverse of the evaluation isomorphism of (i) — as the ©*-link

gau
+ell OxH +ell
tq,7O* " NF g tq O *INF
fro T?!TGie“NF to 17!T®ie“NF.

(iv) (Coric F*F-Prime-Strips) The definition of the unit portion of the
theta and Gaussian monoids that appear in the construction of the F' -prime-
strips 1§y, 1Seau of (ii) gives rise to natural isomorphisms

Tg'Zu ~ TS"XH ~ Tgkxu

env gau
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of the F*F_prime-strips associated to the F'" -prime-strips TS'Z, LK ngau'
Moreover, by composing these natural isomorphisms with the poly-isomorphisms
induced on the respective F'*F-prime-strips by the ©*H- and ©XF -links of (iii),

gau
one obtains a poly-isomorphism
FXp ~ =X
T = 8,

which coincides with the full poly-isomorphism between these two F*M-prime-
strips — that is to say, “(*)SZX“’ 7 is an invariant of both the ©*#- and © gk -links.
Finally, this full poly-isomorphism induces the full poly-isomorphism

ol 5 i

between the associated D~ -prime-strips; we shall refer to this poly-isomorphism as
+ell +ell
the D-OFUNF-link from THTPO™"NF 1, 19y P-O7NF

(v) (Frobenius-pictures) Let {"HTGieHNF}neZ be a collection of distinct
O*°INF-Hodge theaters indexed by the integers. Then by applying the ©*H-
and ©gk-links of (iii), we obtain infinite chains

X~ _ +ell [SRelad +ell [SRelad +ell OXH
(n 1)7_[7’@ NF nf]_lT@ NF (n+1)HT® NF

X X X X

au _ +ell ek +ell (Cholad +ell ok
g (n 1)7_[7-9 NF g nHT@ NF 3 (n+1)HT® NF g

of ©*#-/©%K_linked OT°'NF-Hodge theaters — cf. Fig. 1.8 below, in the case

gau
of the Ok -link. FEither of these infinite chains may be represented symbolically as

an oriented graph r

— e — e — e —

X
gau 5 9

— 1.e., where the arrows correspond to either the “ G—X‘; ’s” or the “ — ’s”, and
the “e’s” correspond to the ‘“HT@iEIINF 7. This oriented graph T admits a natural
action by Z — i.e., a translation symmetry — but it does not admit arbitrary
permutation symmetries. For instance, T does not admit an automorphism that
switches two adjacent vertices, but leaves the remaining vertices fixed.

n%TGiellNF (n+1)HT@iellNF
( ; ) ( ; )
ngv ~ ngv (l*)Q (n+1)gv ~ (n+1)gv (l*)Q
ngv< . > — (n—i—l)gv

Fig. 1.8: Frobenius-picture associated to the © gk -link
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Theorem B. (Etale-pictures of Base-O°!NF-Hodge Theaters) Suppose
that we are in the situation of Theorem A, (v).

(i) Write

A nHTD-@ieHNF 2} (n—l—l)HTD—@ienNF i}
— where n € Z — for the infinite chain of D-O*°'NF-linked D-O*°'NF-
Hodge theaters [cf. Theorem A, (iv), (v)] induced by either of the infinite
chains of Theorem A, (v). Then this infinite chain induces a chain of full poly-
isomorphisms

3 nph, 5 (gl 3
[cf. Theorem A, (iv)]. That is to say, “7)D' 7 forms a constant invariant —
i.e., a “mono-analytic core” [cf. the discussion of [I[UTchl], §11] — of the above
infinite chain.

(ii) If we regard each of the D-©F*" NF-Hodge theaters of the chain of (i) as a
spoke emanating from the mono-analytic core “(_)QZ” discussed in (i), then we

obtain a diagram — i.e., an étale-picture of D-O**'"NF-Hodge theaters — as
in Fig. 1.9 below [cf. the situation discussed in [IUTchl], Theorem A, (iii)]. Thus,
each spoke may be thought of as a distinct “arithmetic holomorphic struc-
ture” on the mono-analytic core. Finally, [cf. the situation discussed in [IUTchl],
Theorem A, (iii)] this diagram satisfies the important property of admitting arbi-
trary permutation symmetries among the spokes [i.e., the labels n € 7 of the
D-0FUNF-Hodge theaters].

(iii) The constructions of (i) and (ii) are compatible, in the evident sense,
with the constructions of [IUTchl], Theorem A, (iii), relative to the natural iden-

~

tification isomorphisms (D% = (DL [ef. Theorem A, (i)].

D_@iellNF
"HT

’ _@TelINFE _ [ 7 _@TINF
T PO RN Y

n///HTD_eiellNF

Fig. 1.9: Etale-picture of D-OF!NF-Hodge theaters
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Notations and Conventions:

We shall continue to use the “Notations and Conventions” of [[UTchI], §0.
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Section 1: Multiradial Mono-theta Environments

In the present §1, we review the theory of mono-theta environments devel-
oped in [EtTh] and give a “multiradial” interpretation of this theory, which will
be of substantial importance in the present series of papers. Roughly speaking, in
the language of [AbsTopllII], §13, this interpretation consists of the computation of
which portion of the various objects constructed from the “arithmetic holomorphic
structures” of various @T°!NF-Hodge theaters may be glued together, in a fashion
consistent with the constructions of the objects of interest, via a “mono-analytic”
[i.e., “arithmetic real analytic”| core. Put another way, this computation may be
thought of as the computation of

what one arithmetic holomorphic structure looks like from the point of
view of a distinct arithmetic holomorphic structure that is only related to
the original arithmetic holomorphic structure via the mono-analytic core.

In fact, this sort of computation forms one of the central themes of the present
series of papers.

Let N € N>; be a positive integer; [ an odd prime number; k an MLF of
odd residue characteristic p # | that contains a primitive 4l-th root of unity; k an

algebraic closure of k;

2.9
a hyperbolic curve of type (1,(Z/1Z)®) [cf. [EtTh], Definition 2.5, (i)] over k that
admits a stable model over the ring of integers Oy of k; X, - C), the k-core

determined by X, [cf. the discussion at the beginning of [EtTh], §2]. Write thpk

for the tempered fundamental group of X ; G def Gal(k/k); Agg def Ker(Hgg —»
= X

k

Gr) C HtXp for the geometric tempered fundamental group of X .- We shall use

=
similar notation for objects associated to Cy.

Definition 1.1. Let
M@

be a mod N mono-theta environment [cf. [EtTh], Definition 2.13, (ii)] which is
isomorphic to the mod N model mono-theta environment determined by X > write

HM@

for the underlying topological group of M® [cf. [EtTh], Definition 2.13, (ii), (a)].
Then:

(i) There exist functorial algorithms
M® — Iy (M®); M® — [Ix(M®); M®— G(M®); M® — Aye;

M® — Ay (M®); M® — Ax(M®); M (I-Ag)(M®); M® — 11, (M®)
for constructing from M® a quotient ITyje — IIy(M®) [cf. [EtTh], Corollary
2.18, (iii)]; a topological group Ilx(M®) which is: isomorphic to ITI'? and con-
tains IIy (M®) as a normal open s_ubgroup [cf. [EtTh], Corollary 2:.}f8, (iii)]; a
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quotient I1x (M®) — G(M®) corresponding to Gy, [cf. [EtTh], Corollary 2.18,
()], which ‘may also be thought of as a quotient ITye —» Iy (M®) - G(M®); a
closed normal subgroup ANV et Ker(Ilyje — G(M®)) C Ilye; a closed normal
subgroup Ay (I\\/JI@) = Ker(Hy(M@) — G(M®)) C Ily (M@); a closed normal sub-
group AK(MG) Ker(HX (M®) - G(M®)) C IIx (MG) corresponding to Atp [cf.
[EtTh], Corollary 2.18, (i)]; a subquotient (I - A@)(MG) of Iy (M®) which admlts a
natural I1x (M®)-action [hence also a Iy (M®)-action, as well as, by composition, a
HMe—acti(;l] relative to which it is abstr;ctly isomorphic to Z(1) [cf. [EtTh], Corol-
lary 2.18, (i)]; a closed normal subgroup I1,,(M®) Lt Ker(IIyje — IIy (M®)) C Il
[cf. [EtTh], Corollary 2.19, (i)] which admits a natural ITx (MQ)—act_ion [hence also
a Iy (M®)-action, as well as, by composition, a HMe-a(;ion] relative to which it

is abstractly isomorphic to (Z/NZ)(1). Also, we recall that the structure of M®
determines a lifting of the natural outer action of

(1 Z)(M®) = Ix (M®)/Tly (M®) = Ax (M®)/Ay (M®)

(M®) to an outer action of (I - Z)(M®) on Aye [cf. [EtTh], Definition 2.13,
and the preceding discussion; [EtTh], Proposition 2.14, (i)].

on X
(i), (ib),

(ii) We shall refer to (I - Ag)(M®) (respectively, II,,(M®)) as the interior
(respectively, exterior) cyclotome associated to M®. By [EtTh], Corollary 2.19,
(i), there is a functorial algorithm for constructing from M® a cyclotomic rigidity
isomorphism

~

(1-Ae)(M®) ® (Z/NZ) = TL,(M®)

between the reductions modulo N of the interior and exterior cyclotomes associated
to M®.

Remark 1.1.1. In light of its importance in the present series of papers, we
pause to review the mono-theta-theoretic cyclotomic rigidity isomorphism
of Definition 1.1, (ii), in more detail, as follows.

(i) First, we recall from [EtTh], Proposition 2.4 [cf. also the construction of the
covering “Y1°8 — X1°8” at the beginning of [EtTh], §1], that the topological group
ILx (M®) determines topological groups Iy (M®), Iy (M®), and IIc(M®) — i.e.,

corresponding to the coverings “Y'°8 — X'°¢ _ (C1o8” of the discussion preceding
[EtTh], Definition 2.7 — all of which [together with I1x(M®)] may be regarded as

open subgroups of 11 (M®)
Iy (M®) C Hx(M®) C He(M®) (2 Hx(M®) 2 Ix(M®))
that are equipped with compatible surjections to G(M®). Write
Ay(M®) © Ax(M®) € Ac(M®) (2 Ax(M®) 2 Ax(MP))

for the respective kernels of these surjections. Moreover, the various topological
groups of the above two displays are equipped with subquotients denoted by means
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of a superscript “©” or a superscript “ell” [cf. the discussion at the beginning of
[EtTh], §1]. These subquotients are completely determined by the topological group
structure of Ilo(M®) [cf. the discussion at the beginning of [EtTh], §1; the proof of
[EtTh], Proposition 1.8]. For instance, we observe that one may reconstruct from
the topological group I1x (M®) [cf. [EtTh], Corollary 2.18, (i)] the quotient

Mye — Iy (M®) — IIH(M®)

[which isomorphic to Z(l) X Gy, relative to the natural cyclotomic action of Gy,
on Z(1)] corresponding to the quotient “II\? — (II}?)"” of the discussion at the
beginning of [EtTh], §1.

(ii) Observe that any closed subgroup H C IIy (M®) determines, by forming the
inverse image via the quotient ITyje — Iy (M®), a closed subgroup ITye | C ye.
On the other hand, by forming the quotient of ITyze by the restriction of the “theta
section portion” of the mono-theta environment M® [cf. [EtTh], Definition 2.13,
(ii), (c)] to the subgroup Ker(Ily (M®) — IIP(M®)) C Ily (M®), it makes sense to
speak of the quotient of Ilye N

(e —) HM®|H§(M@) (— HE(MQ))

determined by the quotient ITy (M®) — Hg(M@) — cf. the discussion at the

beginning of the proof of [EtTh|, Corollary 2.19, (i). In particular, it makes sense
to speak of the subquotient of Ilyye determined by any closed subgroup — i.e., such
as (- Ag)(M®) C IY(M®) — of TIY (M®).

(iii) In addition to the subgroup
H“(M@) — HM@|(Z-A@)(M@)

determined by the subgroup II,(M®) C Iye of Definition 1.1, (i), the “theta
section portion” of the mono-theta environment M® [cf. [EtTh], Definition 2.13,
(ii), (¢)] determines, by restriction, a subgroup

sM)|@.a0)0e) € Mo |@.ae)@e)

that maps isomorphically to (I-Ag)(M®) via the natural projection ITye |(1-26) ()
— (- Ag)(M®) [cf. the proof of [EtTh], Corollary 2.19, (i)]. On the other hand,
by considering liftings v of automorphisms of Ay (M®) determined by conjugation
by elements of Ax(M®) to automorphisms of ITye that determine outer automor-

phisms of the sort that appear in the definition of a mono-theta environment |cf.
[EtTh], Definition 2.13, (ii), (b)] and then forming the “commutator v(3)-5~1” of
such liftings with arbitrary elements § € AX(M@) [cf. [EtTh], Proposition 2.14,

()], one obtains a natural bilinear “commutator map”

[— =] (Ag(MQ)/Ag(Me)) X Azl(M@) — Ipe|(.ae)01@)

— where we recall that (I-Z) = Ax(M®)/Ay (M®) is abstractly isomorphic to Z,

while A$!(M®) is abstractly isomorphic to 7 — whose image determines a subgroup

s (M) 1.aoyare) € e |(1.ae)me)
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that maps isomorphically to (I-Ag)(M®) via the natural projection IIye |(1-20) (M)
— (I - Ag)(M®) [cf. the proof of [EtTh], Corollary 2.19, (i)]. The mono-theta-
theoretic cyclotomic rigidity isomorphism of Definition 1.1, (ii), is then re-
constructed [cf. [EtTh], Corollary 2.19, (i)] by forming the difference of the two
sections s°(M®)|.a0)me)s 58(M®)|(1.a0)010)-

(iv) Next, we observe that the mono-theta-theoretic cyclotomic rigidity isomor-
phism of Definition 1.1, (ii), admits a certain symmetry with respect to the group
Ac(M®)/Ax (MP®) = F,** [cf. [TUTchI], Definition 6.1, (v)], as follows. First of all,

let us observe that the natural conjugation action of HZ(M@) on Iye|.aq)me)
factors through the natural surjection Iy (M®) — G(M_@). In particular, by ap-
plying the natural surjection Il (M®) —»_G(Me), one may regard Ilye|;.Aq)wme)
as being equipped with a “naively defined” action by IIc(M®). On the other hand,

let us recall from the discussion preceding [EtTh], Definition 2.13, that the “model”
for Ilyye is originally constructed as the subgroup

Hu(M®) » Hy(M®) C IL,(M®) » Io(M®)

— where the semi-direct products are formed relative to the natural cyclotomic
action of Tlc(M®). Here, the evident subquotient I1,(M®) x (I - Ag)(M®) of
I1,,(M®) x I (M®) — i.e., which corresponds to the subquotient e l(1-20)(m©) Of
IIyje — is easily verified to be stabilized by the action via conjugation of II,, (M®) x
I1c(M®). Moreover, one verifies easily that this conjugation action of I1,,(M®) x
I1c(M®) factors through the natural quotient I1,,(M®) x I[Ic(M®) — Io(M®) —
G(M®) and coincides with the action of G(M®) via the cyclotomic character G(M®)
— 7Z* on the abelian profinite group ,(M®) x (I-Ag)(M®) [where we re-
call that Z* acts tautologically on any abelian profinite group]. That is to say,

in summary, even if one is not equipped with the “model embedding” e —
HM(M@) x IIo(M®),

the “naively defined” action of IIo(M®) on Mye | (1.a0)(me) 18 in fact a
“natural action” in the sense that it necessarily coincides with the natural
conjugation action arising from this “model embedding”.

Next, let us observe that the inclusion Ax(M®) C Ax(M®) induces natural
1somorphisms o

~

Ax(M®)/Ay (M) = Ax(M®)/Ay(MP), AF/(M®)

~

5 AS(MO)

of subquotients of IIo(M®), whose codomains are [unlike the domains of these
isomorphisms!] stabilized by the conjugation action of IIo(M®). In particular, by
applying these natural isomorphisms, one may regard the “commutator map”
of (iii) as a map

[— 1 (Ax(M®)/Ay(M®)) x AF(M®) — Miye|@.ae)me)

— i.e., a map for which both the domain and the codomain are equipped with
natural actions by IIc(M®). Now one verifies easily that this “commutator
map” is equivariant with respect to these natural actions by IIo(M®), and,
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moreover, that the various subgroups of HMe|(l. Ag)(Me) constructed in (iii) are
stabilized by the natural action by IIo(M®). In this context, it is also of in-
terest to note that, in fact, it follows immediately from a similar argument to
the argument concerning the automorphisms of a mono-theta environment given
in the proof of [EtTh], Corollary 2.18, (iv), that up to composition with auto-
morphisms of Ilyje that differ from the identity automorphism by a twisted homo-
morphism e — Iy (M®) — I$H(M®) — I1,,(M®) that arises from a Kummer

class of a product of integral powers of “(I/)*” and “q)%(” [cf. [EtTh], Proposi-
tion 1.4, (ii)] — i.e., automorphisms that have no effect on the construction of
the “commutator map” of the above display! — the “model embedding”
Mo — II,(M®) x IIc(M®) may be reconstructed algorithmically from the
mono-theta environment M®. Thus, in summary,

the various constructions discussed in (iii) that underlie the mono-theta-
theoretic cyclotomic rigidity isomorphism of Definition 1.1, (ii), are
stabilized by the natural action by II(M®), hence, in particular, by the
natural action by (Ilc(M®) D) Ag(M®) — Ac(M®)/Ax (M®) = F*,

Here, we remark that the fact that these constructions are stabilized by the ac-
tion of Ax(M®) is “less interesting” in the sense that the automorphisms of
ITy (M®) that arise from the conjugation action by Ax(M®) lift [indeed, “almost

uniquely” — cf. [EtTh], Corollary 2.18, (iv)] to automorphisms of M®, hence
stabilize the constructions under consideration as a consequence of the functoriality
of these constructions with respect to automorphisms [cf. [EtTh], Corollary 2.19,
(i)]. Tt is for this reason that, in the present context, it is natural to regard the
symmetry properties of interest as being symmetries with respect to the quotient
Ac(M®) - Ac(M®)/Ax(M®) = F**. On the other hand, the approach of the
above discussion via model embeddings to this full symmetry with respect to Ffi
may also be regarded as being simply an ezplicit computation, in the case of this
Ffi—symmetry, of the functoriality of the constructions under consideration with
respect to isomorphisms [cf. [EtTh], Corollary 2.19, (i)].

(v) In the context of the discussion following the final display of (iv), it is
perhaps of interest to recall that the symmetries of mono-theta environments
relative to the conjugation action by Ax (M®) are a consequence of the “shift-
ing automorphisms” discussed in [EtTh], Proposition 2.14, (ii) [cf. the discussion
of [EtTh], Remark 2.14.3]. That is to say, despite the fact that the meromor-
phic function constituted by the theta function does not admit such symmetries,
the corresponding mono-theta environment does admit such symmetries. This
is one important difference between the theory of mono-theta environments and
the theory of bi-theta environments [cf. the discussion of [EtTh|, Remark 2.14.3].
Alternatively, the existence of such symmetries may be regarded as

one of the fundamental differences between the mono-theta-theoretic
approach to cyclotomic rigidity taken in [EtTh] and the approach to
cyclotomic rigidity taken in [[UTchI|, Example 5.1, (v), via Kummer
classes of rational functions.

Put another way, this fundamental difference may be thought of as the difference
between constructing a cyclotomic rigidity isomorphism from a line bundle —
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i.e., which, in general, admits more symmetries than a rational function — and
constructing a cyclotomic rigidity isomorphism from a rational function. On the
other hand, if one attempts to mimick the approach of [EtTh] [i.e., of constructing
“shifting automorphisms” as in [EtTh], Proposition 2.14, (ii)] in the case of sym-
metries with respect to the quotient Ac(M®) — Ac(M®)/Ax (M) = Iﬁ‘ﬁi, then
it is necessary to allow “denominators of the form %” when one works with the
module IIyze \(l. Ae)me)- In fact, however, when one computes the commutator map
[—, —] considered in (iv), such terms with denominators vanish, as a consequence
of the fact that ITye |;.ao)me) commutes with the elements of interest in the com-
putation of this commutator map. It is precisely this state of affairs that allows
one to construct an lei-symmetric cyclotomic rigidity isomorphism as dis-
cussed in (iv), that is to say, which, by itself, is somewhat weaker than the “full
mono-theta environment” [i.e., which does not admit Ffi-symmetm'es unless one
allows for denominators as discussed above!]. Thus, in summary, by comparison to
the approach to cyclotomic rigidity taken in [EtTh], the slightly weaker approach
discussed in (iv) may be thought of as corresponding to the difference between con-
structing a cyclotomic rigidity isomorphism from a line bundle and constructing
a cyclotomic rigidity isomorphism from the curvature, or first Chern class, of
the line bundle [cf. the discussion of Remark 3.6.5 below].

One key property of mono-theta environments is that they may be constructed
either group-theoretically from Hgk or category-theoretically from certain tempered

Frobenioids related to é .

Proposition 1.2. (Group- and Frobenioid-theoretic Constructions of
Mono-theta Environments)

(i) Let I be a topological group isomorphic to HE? . Then there exists a
=k
functorial group-theoretic algorithm

IT — M®(II)

for constructing from the topological group I a mod N mono-theta environ-
ment “up to isomorphism” [cf. [EtTh], Corollary 2.18, (ii)] such that the
composite of this algorithm with the algorithm M® (1) — I x (M®(I1)) discussed in
Definition 1.1, (i), admits a functorial isomorphism II = IIy(M®(II)). Here,

the “isomorphism indeterminacy” of M®(II) is with respect to a group of “pn-
conjugacy classes” of automorphisms which is of order 1 (respectively, 2) if N is
odd (respectively, even) [cf. [EtTh], Corollary 2.18, (iv)].

(ii) Let C be a category equivalent to the tempered Frobenioid determined
by X, [i.e., the Frobenioid denoted “C” in the discussion at the beginning of [EtTh],

§5; the Frobenioid denoted “F 7 in the discussion of [IUTchl], Example 3.2, (1)].

Thus, C admits a natural Frobenioid structure over a base category D equivalent
to BemP(TI'2 )0 [cf. [Frdl], Corollary 4.11, (i), (iv); [EtTh], Proposition 5.1].

=k
Then there exists a functorial algorithm

C — M®(C)
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for constructing from the category C o mod N mono-theta environment /cf.
[EtTh], Theorem 5.10, (iii)] such that the composite of this algorithm with the algo-
rithm M®(C) — ILx (M®(C)) discussed in Definition 1.1, (i), admits a functorial

isomorphism D = B'P(I1x (M®(C)))°.

Proof. The assertions of Proposition 1.2 follow immediately from the results of
[EtTh] that are quoted in the statements of these assertions. ()

The cyclotomic rigidity isomorphism of Definition 1.1, (ii), that arises in the
case of the mono-theta environment M® (C) constructed from the tempered Frobe-
nioid C [cf. Proposition 1.2, (ii)] is compatible with a certain cyclotomic rigidity
isomorphism that arises in the theory of [AbsToplIII| [cf. also [FrdII], Theorem 2.4,
(ii)] in the following sense.

Proposition 1.3. (Compatibility of Cyclotomic Rigidity Isomorphisms)
In the situation of Proposition 1.2, (ii):

(i) (Mono-theta Environments Associated to Tempered Frobenioids)
For a suitable object S € Ob(C) [cf. [EtTh], Lemma 5.9, (v)], whose image in D
we denote by SP* € Ob(D), the interior cyclotome (I - Ag)(M®(C)) ® (Z/NZ)
corresponds to a certain subquotient of Aut(S"®), which we denote by (I-Ag)s ®
(Z/NZ), while the exterior cyclotome I1,(M®(C)) corresponds to the subgroup
pn(S) C OX(S) C Aut(S). In particular, the cyclotomic rigidity isomorphism
of Definition 1.1, (ii), takes the form of an isomorphism

(I-Ae)s ® (Z/NZ) = pn(S) (smono-©)

[¢f. [EtTh], Proposition 5.5; [EtTh/, Lemma 5.9, (v)].

(ii) (MLF-Galois Pairs) Relative to the formal correspondence between p-
adic Frobenioids [such as the base-field-theoretic hull C"* gssociated to C
— c¢f. [EtTh], Definition 3.6, (iv)] and “MLF-Galois TM-pairs” in the theory
of [AbsToplIll] [cf. [AbsToplll], Remark 3.1.1], “un(S)” [cf. (i)] corresponds to
“po(Mrw) @ (Z/NZ)” in the theory of [AbsToplll], §3 [cf. [AbsToplll], Definition
8.1, (v)], while (I-Ae)s ® (Z/NZ)” [cf. (i)] corresponds to “us(Ilx) ® (Z/NZ)”
in the theory of [AbsToplll], §1 [cf. [AbsToplll], Theorem 1.9, (b); [AbsToplll],
Remark 1.10.1, (ii); [IUTchl], Remark 3.1.2, (iii)]. In particular, by composing the
inverse of the natural isomorphism “p=(Gy) = p=(x)” of [AbsTopllIl], Corollary
1.10, (c), with the inverse of the natural isomorphism “p(Mrm) = p(G)” of [Ab-
sTopIIl], Remark 3.2.1, we obtain another cyclotomic rigidity isomorphism

(I-Ae)s @ (Z/NZ) = pn(S) (PGt

[cf. the various identifications/correspondences of notation discussed above].

(iii) (Compatibility) The cyclotomic rigidity isomorphisms (00009 (xPs-Gal)
of [EtTh], [AbsToplll] [cf. (i), (ii)] coincide.
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Proof.  Assertions (i), (ii) follow immediately from the results and definitions of
[EtTh], [AbsToplll] that are quoted in the statements of these assertions. Assertion
(iii) follows immediately from the fact that in the situation where the Frobenioid
C involved is not just “some abstract category”, but rather arises from familiar ob-
jects of scheme theory [cf. the theory of [EtTh], §1!], both isomorphisms (™9,
(xPs-Galy coincide with the conventional identification between the cyclotomes in-
volved that arises from conventional scheme theory. ()

Proposition 1.4. (Etale Theta Functions of Standard Type) Let II be as
in Proposition 1.2, (i). Then there are functorial group-theoretic algorithms
[¢f. [EtTh], Corollary 2.18, (i)]

I Ty (D) Ies (I Ae)(ID)

for constructing from 11 the open subgroup HX (IT) C II corresponding to the tem-

pered covering “i:}” [cf. the discussion precedz'gg [EtTh], Definition 2.7] and a cer-
tain subquotient (1- Ae)(II) of 11 [cf. the subquotient “(I- Ae)(M®)” of Definition
1.1, (i)], as well as a functorial group-theoretic algorithm

M o) C  HY(Ig(I), (- Ae)(ID))

— c¢f. the constant multiple rigidity property of [EtTh], Corollary 2.19, (iii)
— for constructing from 11 the set O(I1) of p-multiples [i.e., where p; denotes the
group of l-th roots of unity] of the reciprocal of the “(I-7Z X pa)-orbit ﬁ@’l'zx’” of
an [-th root of the étale theta function of standard type” of [EtTh/_, Definition
2.7. In this context, we shall write

0(IT)  C i, HY(Ig (T)], (- Ae)(IT))

— where 0(I1) denotes the subset of elements of the direct limit of cohomology
modules in the display for which some [positive integer/ multiple [i.e., some [pos-
itive integer| power, if one writes these modules “multiplicatively”] coincides, up
to torsion, with an element on(H); J ranges over the finite index open subgroups

of I1; the notation “|;” denotes the fiber product “xyJ”.

Proof. The assertions of Proposition 1.4 follow immediately from the results and
definitions of [EtTh] that are quoted in the statements of these assertions. O

Remark 1.4.1. Before proceeding, let us recall from [EtTh], §1, §2, the theory
surrounding the “étale theta functions of standard type” that appeared in Proposi-
tion 1.4.

(i) Write
X, = X = Cy

for the hyperbolic orbicurves of type (1,l-tors), (1,l-tors)+ determined by X, [cf.

[EtTh], Proposition 2.4]. Thus, X, has a unique zero cusp [i.e., the unique cusp
fixed by the action of the Galois group Gal(X,/C})]. Write

p— € Xy (k)
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for the unique torsion point of order 2 whose closure in any stable model of X
over Oy, intersects the same irreducible component of the special fiber of the stable
model as the zero cusp [cf. the discussion of [IUTchI], Example 4.4, (i)].

(ii) The unique order two automorphism tx of X, over k [cf. [EtTh], Remark

2.6.1] lies over an order two automorphism vx [cf. [EtTh], Remark 2.6.1] and
corresponds at the level of tempered fundamental groups [cf., e.g., [SemiAnbd],

Theorem 6.4] to the unique order two Ag? -outer automorphism of Ht)? over G,
kK —k
which, by abuse of notation, we shall also denote by ¢x. Write

Y, =X, -4,

for the tempered coverings of X ) that correspond, respectively, to the open sub-

groups Hp &f Z(Ht)?k) C OP [cf. Proposition 1.4], TI} def y(IY) def

k = = = : -_— =

Hy(M@( v)) C Htp [cf. Definition 1.1, (i); Proposition 1.2, (i)]. Since k con-
k

tains a primitive 41- th root of unity, it follows from the definition of an “étale theta
function of standard type” [cf. [EtTh], Definition 1.9, (ii); [EtTh], Definition 2.7]
that there exist rational points

(u-)y € Y, (k), (u-)x € X, (k)

such that (p-)y — (p— )X > p—. Since vx fizes p_, it follows immediately that
Lx fizes the Gal(X /X ,.)-orbit of (p )X, hence [since Aut(X, ) = Z/2IZ, where we
recall that [ # 2 — cf. [EtTh], Remark 2.6.1] that ¢ X ﬁxes (u—)x. One verifies
immediately that this implies that there exists an order two automorphism Ly of
gk lifting ¢x which is uniquely determined up to [ - Z-conjugacy and composition
with an element € Gal(zk/gk) by the condition that it fiz the Gal(zk/gk)—orbit of
some element [which, by abuse of notation, we shall continue to denote by “(p— )"
of the Gal(Y /X},)-orbit of (u—)y-. Here, we think of [ - Z, Gal(Y /Y.) (% Z/2Z)

as the subquotients appearing in the natural exact sequence
1— Gal(gk/gk) — Gal(gk/ék) —1-Z—1

determined by the coverings Y — Y — X Again, by abuse of notation, we

shall also denote by ty the correspondmg A t (= Agk ﬂHgf )-outer automor-
—k — =k
phism of HSE . We shall refer to the various automorphisms ¢x, ¢y as inversion

=k
automorphisms [cf. [EtTh], Proposition 1.5, (iii)]. Write
D,  Clly

—k

for the decomposition group of (pu_)y [which is well-defined up to A;f -conjugacy|
pu— —k

—so Dy, is determined by ¢y up to Atp (def Ay (MO (T )))-conjugacy [cf. the
—k
notation of Remark 1.1.1, (i)]. . We shall refer to either of the pairs

(ty € Aut(Y,), (u-)y): (1 € Aut(ILf )/In(AP ), D, )

—k —k
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as a pointed inversion automorphism. Again, we recall from [EtTh], Definition
1.9, (ii); [EtTh], Definition 2.7, that

an “étale theta function of standard type” is defined precisely by the con-
dition that its restriction to D,  be a 2l-th root of unity.

Proposition 1.5. (Projective Systems of Mono-theta Environments) In
the notation of the above discussion, let

M = {.. - M§ —-M§ — ..}
be a projective system of mono-theta environments — where M% s a mod
M mono-theta environment [which is isomorphic to the mod M model mono-theta
environment determined by ék], and the index M of the projective system wvaries

multiplicatively among the elements of N>y [cf. [EtTh], Corollary 2.19, (ii),
(iii)]. Then:

(i) Such a projective system is uniquely determined, up to isomorphism,
by X, [¢f. Remark 1.5.1 below; the discrete rigidity property of [EtTh], Corollary

2.19, (ii)].

(ii) The transition morphisms of the resulting projective system of topological
groups {... — Ix(M$§,) — Ox(M$§,) — ...} [¢f the notation of Definition
1.1, (i)] are all iso_morphisms. Moreover, any isomorphism of topological groups
Iy (MS,) = Ilx (MS,), where M divides M’, lifts to a morphism of mono-theta
environments M?Z[, — MY, [ef. [EtTh], Corollary 2.18, (iv)]. Thus, to simplify the

notation, we shall identify these topological groups via these transition morphisms
and denote the resulting topological group by the notation HX(M*@). In particular,

we have an open subgroup Il (M?) C 11y (M?), a subquotient (I-Ag)(M?) of

IIx (M?), and a quotient Ilx (M?) — G(M®) [cf. Definition 1.1, (i); Proposition
1.4]. n

(i4i) The projective system of exterior cyclotomes {... — 1[,(M$,) —
I,,(MS,) — ...} [cf the notation of Definition 1.1, (i)] determines a projective
limit exterior cyclotome H”(M?) which s equipped with a uniquely determined
cyclotomic rigidity isomorphism

(- Ag)(M?) = I, (M)
[i.e., obtained by applying the cyclotomic rigidity isomorphisms of Definition 1.1,

(ii), to the various members of the projective system M® ). In particular, [cf. Propo-
sition 1.4] we obtain a functorial algorithm

—env

ME -0, (M) C H(ITy(M2), 11, (M2))

— where one may think of the “env” as an abbreviation of the term “/mono-thetal
environment” — for constructing from M® an exterior cyclotome wversion
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:env(MS?) of O(IT) f[i.e., by transporting O(I1) via the above cyclotomic rigidity iso-
morphism] — cf. [EtTh], Corollary 2.19, (iii). In this context, we shall write

—=env

ol (MP)  C lim H'(I;(MP)|,, 10, (M?))
J p—

— where OOQGHV(M*@) denotes the subset of elements of the direct limit of cohomol-
ogy modules in the display for which some [positive integer]/ multiple [i.e., some
[positive integer| power, if one writes these modules “multiplicatively”] coincides,

up to torsion, with an element of genv(M*@); J ranges over the finite index open
subgroups of HK(MS?).

(iv) Suppose that MO arises from a tempered Frobenioid C [cf. Propositions
1.2, (ii); 1.3]. Then this construction of QenV(M*@) [cf. (iii)] is compatible with
the Kummer-theoretic construction 0} the étale theta function — i.e., by con-
sidering Galois actions on roots of the Frobenioid-theoretic theta function /cf.
the theory of [EtTh], §5]. In particular, it is compatible with the Kummer theory
of the base-field-theoretic hull C*¢ [cf. [Frdll], Theorem 2.4; [AbsTopllI],
Proposition 3.2, (ii); [AbsToplll], Remark 3.1.1].

Proof. 'The assertions of Proposition 1.5 follow immediately from the results and
definitions of [EtTh] [as well as [FrdII|, [AbsTopllI]] that are quoted in the state-
ments of these assertions. ()

Remark 1.5.1.  We recall in passing that one important consequence of the
discrete rigidity property established in [EtTh], Corollary 2.19, (ii) — which, in
effect, allows one to restrict one’s attention to [ - Z-translates [i.e., as opposed
to [ - Z—translates] of the usual theta function — is the resulting compatibility of
projective systems of mono-theta environments [as in Proposition 1.5] with the
discrete structure inherent in the various isomorphs of the monoid N that appear
in the structure of the tempered Frobenioids that arise in the theory [cf. [EtTh],
Remark 2.19.4; [EtTh], Remark 5.10.4, (i), (ii)].

Remark 1.5.2. Note that, in the notation of Proposition 1.5, (iii), by consider-
ing “tautological Kummer classes” of elements of I1,,(M®), one obtains a natural
ILy (M®)-equivariant injection

I, (M?) ® Q/Z — lig H'(Ily(M?)]s, I, (M?))
7 X

whose image is equal to the torsion subgroup of the codomain of the injection.
Indeed, it follows immediately from the fact that I1,,(M®) is torsion-free that the
torsion subgroup of the codomain of the displayed injection may be identified with
the torsion subgroup of

lig H'(Jg, 11, (M?))
J

— where J ranges over the finite index open subgroups of I1x (M®); we write Jg for

the image of J in G(M®). The desired conclusion thus follows immediately from
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the well-known Kummer theory of MLF’s, i.e., the fact that the Kummer map
(I,(M9) ® Q/Z) — HY(Jg,11,(M?)) [where the superscript “J” denotes the
submodule of J-invariants| is injective with image equal to the torsion subgroup of
the codomain.

Before proceeding, we review a certain portion of the theory of [AbsToplI] that
is relevant to the content of the present §1.

Proposition 1.6. (Cores and Cuspidalizations) Let II be as in Proposition
1.2, (i). Write A C II for the [group-theoretic! — cf., e.qg., [AbsAnab], Lemma
1.3.8] subgroup corresponding to Ag? . Then:
=k
(i) (Cores) There erists a functorial group-theoretic algorithm /cf. [Ab-
sTopll], Corollary 3.3, (i); [AbsTopll], Remark 3.3.3]

I {(Hg)HC(H)—»H/A}

for constructing from 11 a topological group 1o (I1) equipped with an augmentation
[i.e., a surjection] lc(1) — II/A — whose kernel we denote by Ac(1l) — that
contains I as an open subgroup in a fashion that is compatible with the respec-
tive surjections to II/A and which satisfies the property that when II = Hgk, the
inclusion 11 C Il (11) may be naturally identified with the inclusion Hgk C Htcl?k.
(i) (Elliptic Cuspidalizations) Let N be a positive integer. Then there

exists a functorial group-theoretic algorithm [cf. [AbsTopll], Corollary 3.3,
(iii); [AbsTopll], Remark 3.3.3]

I {HUN(H)—»H}

for constructing from 11 a topological group 1y, (II) equipped with a surjection
Iy, (IT) = II [so the augmentation II — II/A determines, by composition, an aug-
mentation My (IT) — /A] such that when TL = TI'Y , the surjection Ty, (TT) — 11

=k
may be naturally identified with a certain surjection — i.e., “elliptic cuspidaliza-

tion” — that arises from a certain open immersion determined by the N -torsion

points of a once-punctured elliptic curve that forms a double covering of Cy [cf.
[AbsTopll], Corollary 3.3, (iii)].

Proof. The assertions of Proposition 1.6 follow immediately from the results of

[AbsTopll] that are quoted in the statements of these assertions [cf. also Remark
1.6.1 below]. O

Remark 1.6.1. We recall in passing that the construction of Proposition 1.6,
(i), amounts, in effect, to the computation of various centralizers of the image of
various open subgroups of IL/A in the outer automorphism groups of various open
subgroups of A. In a similar vein, the construction of Proposition 1.6, (ii), amounts
to the computation of various outer isomorphisms between various subquotients of
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A that are compatible with the outer actions of various open subgroups of 11/A.
More generally, although in Proposition 1.6, we restricted our attention to the con-
struction of cores and elliptic cuspidalizations, an analogous result may be obtained
for more general functorial group-theoretic algorithms involving “chains of elemen-
tary operations”, as discussed in [AbsTopl], §4 — e.g., for Belyi cuspidalizations,
as discussed in [AbsToplI], Corollary 3.7.

Next, we proceed to discuss the “multiradial” interpretation of the theory of
[EtTh] that is of interest in the context of the present series of papers. We begin
by examining various examples of the sort of situation that gives rise to such an
interpretation.

Example 1.7. Radial and Coric Data I: Generalities.

(i) In the following discussion, we would like to consider a certain “type of
mathematical data”, which we shall refer to as radial data. This notion of a “type
of mathematical data” may be formalized — cf. [IUTchIV], §3, for more details.
From the point of view of the present discussion, one may think of a “type of
mathematical data” as the input or output data of a “functorial algorithm” [cf. the
discussion of [IUTchI], Remark 3.2.1]. At a more concrete level, we shall assume
that this “type of mathematical data” gives rise to a category

R

— i.e., each of whose objects is a specific collection of radial data, and each of whose
morphisms is an isomorphism. In the following discussion, we shall also consider
another “type of mathematical data”, which we shall refer to as coric data. Write

C

for the category obtained by considering specific collections of coric data and iso-
morphisms of collections of coric data. In addition, we shall assume that we are
given a functorial algorithm — which we shall refer to as radial — whose input data
consists of a collection of radial data, and whose output data consists of a collection
of coric data. Thus, this functorial algorithm gives rise to a functor ® : R — C. In
the following discussion, we shall assume that this functor is essentially surjective.
We shall refer to the category R and the functor ® as radial and to the category
C as coric. Finally, if I is some nonempty index set, then we shall often consider
collections

{®; :R; — Clier

of copies of ® and R, such that the various copies of ® have the same codomain C
— cf. Fig. 1.1 below. Thus, one may think of each R; as the category of radial
data equipped with a label ¢ € I, and isomorphisms of such data.

(ii) We shall refer to a triple (R,C,® : R — C) [or to the triple consisting of
the corresponding “types of mathematical objects” and “functorial algorithm”] of
the sort discussed in (i) as a radial environment. If ® is full, then we shall refer
to the radial environment under consideration as multiradial. We shall refer to a
radial environment which is not multiradial as uniradial. Suppose that the radial
environment (R,C,® : R — C) under consideration is uniradial. Then an object of
‘R may, in general, lose a certain portion of its rigidity — i.e., may be subject to a
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certain additional indeterminacy — when it is mapped to C. Put another way,
in general, an object of C is imparted with a certain additional rigidity — i.e.,
loses a certain portion of its indeterminacy — when one fixes a lifting of the object
to R. Thus, in summary,

the condition that (R,C,® : R — C) be multiradial may be thought of as
a condition to the effect that the application of the radial algorithm does
not result in any loss of rigidity.

Finally, we observe that, if (R,C,® : R — C) is an arbitrary radial environment
such that any two collections of radial data are isomorphic, then one may define
the associated [tautological] multiradialization

(Rmtz, C, (I)mtz . Rmtz N C)
of this radial environment as follows: A collection of radial data
(R,C, )

of this multiradialization consists of an object R of R, an object C of C, and the full
poly-isomorphism [cf. [IUTchI], §0] « : ®(R) = C. An isomorphism of collections
of radial data (R, C,a) = (R*,C*, o*) of the multiradialization consists of a pair of
isomorphisms R = R*, C = C* [which are necessarily compatible with «, a*]. The
coric data of the multiradialization is taken to be the coric data of the original radial
environment (R,C,® : R — C). The radial algorithm of the multiradialization is
taken to be the assignment
(R,C,a) —» C

— whose associated radial functor is clearly full [cf. our assumption that any
two collections of radial data are isomorphicl] and essentially surjective, hence
determines a [tautologically!] multiradial environment (R™% C, @™t ;. R™% — (),
together with a natural functor R — R™% [i.e., given by the assignment R
(R, ®(R),®(R) = ®(R))]. Indeed,

the tautological multiradialization of the given radial environment
may be thought of as the result of “forgetting, in a minimal possible fash-
ion, the uniradiality” of the original radial environment (R,C,® : R — C).

R;

|

Ri’ — C < Ri”

T

R’i”'

Fig. 1.1: Radial functors valued in a single coric category
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(iii) In passing, we pause to observe that one way to think of the significance
of the multiradiality of a radial environment (R,C,® : R — C) is as follows: Write

RXCR

for the category whose objects are triples (R, R2, ) consisting of a pair of objects
Ry, Ry of R and an isomorphism a : ®(R;) = ®(Ry) between the images of Ry,
Rs via ®, and whose morphisms are the morphisms [in the evident sense| between
such triples [cf. the discussion of the “categorical fiber product” given in [Frdl], §0].
Write sto : R Xx¢ R — R x¢ R for the functor (R, R, o) + (Rz, R1,a~1) obtained
by switching the two factors of R. Then

one formal consequence of the multiradiality of a radial environment
(R,C,® : R — C) is the property that the switching functor st :
RxcR = RxcR preserves the isomorphism class of objects of R x¢R.

Indeed, one verifies immediately that this multiradiality is, in fact, equivalent to
the condition that every object (Ry, Ra, ) of R X¢ R be isomorphic to the object
(Ry, Ry,id : ®(Ry) = ®(R;)) [which is manifestly left unchanged by the switching
functor].

(iv) Next, suppose that we are given another radial environment (RT,CT, T :
RT — CT). We shall refer to the “type of mathematical object” /“functorial algo-
rithm” that gives rise to R (respectively, Ct; ®1) as daggered radial data (respec-
tively, daggered coric data; the daggered radial functorial algorithm). Also, let us
suppose that we are given a 1-commutative diagram

R & Ri
oo ]w
c & cf

— where W and V¢ arise from “functorial algorithms”. If (R,C,® : R — C)
is multiradial (respectively, uniradial), then we shall refer to ¥ as multiradially
defined (respectively, uniradially defined), or [when there is no fear of confusion
between ® and Vx| as multiradial (respectively, uniradial). If Uz admits a 1-
factorization Zg o ® for some Zg : C — R that arises from a functorial algorithm,
then we shall say that Ux is corically defined, or [when there is no fear of
confusion| coric. Thus, by considering the case where R = C, ® = idg, one may
think of the notion of a corically defined ¥ as a sort of special case of the notion
of a multiradial V.

(v) Suppose that we are in the situation of (iv), and that U is multiradially
defined. Then one way to think of the significance of the multiradiality of U is
as follows:

The multiradiality of ¥ renders it possible to consider the simultaneous
execution of the functorial algorithm corresponding to Wy relative to
various collections of radial input data indexed by the set I [cf. Fig.
1.1] in a fashion that is compatible with the identification of the coric
portions [i.e., corresponding to @] of these collections of radial input data
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— cf. Remark 1.9.1 below for more on this point of view. That is to say, at a more
technical level, if one implements this identification of the various coric portions by
means of various gluing isomorphisms in C, then the multiradiality of ¥ implies
that one may lift these gluing isomorphisms in C to gluing isomorphisms in R; one
may then apply Ux to these gluing isomorphisms in R to obtain gluing isomor-
phisms of the output data of Ux. Put another way, if one assumes instead that
Wy is uniradial, then the output data of U depends, a priori, on the “additional
rigidity” [cf. (ii)] of objects of R relative to these images in C; thus, if one attempts
to identify these images in C via arbitrary gluing isomorphisms in C, then one does
not have any way to compute the effect of such gluing isomorphisms on the output
data of Up.

Remark 1.7.1. One way to understand the significance of the fullness condi-
tion in the definition of a multiradial environment is as a condition that allows
one to execute a sort of parallel transport operation between “fibers” of the ra-
dial functor ® : R — C [cf. the notation of Example 1.7, (iv)] — i.e., by lifting
isomorphisms in C to isomorphisms in R [cf. the discussion of Example 1.7, (v)].
Here, it is perhaps of interest to make the tautological observation that, up to an
indeterminacy arising from the extent that ® fails to be faithful, such liftings are
unique. That is to say, whereas a uniradial environment may be thought of as
a sort of abstraction of the geometric notion of a “fibration that is not equipped
with a connection”,

a multiradial environment may be thought of as a sort of abstraction
of the geometric notion of a “fibration equipped with a connection” —

i.e., that allows one to execute parallel transport operations between the
“fibers”.

Relative to this point of view, one may think of the coric data as the portion of
the radial data of a multiradial environment that is horizontal with respect to the
“connection structure”. We refer to Remarks 1.9.1, 1.9.2 below for more on the
significance of multiradiality.

Example 1.8. Radial and Coric Data II: Concrete Examples. In this
following, we consider various concrete examples of multiradial environments, many
of which may, in fact, be understood as special cases of the notion of the tautological
multiradialization associated to a suitable choice of radial environment, i.e., as
discussed in Example 1.7, (ii).

(i) From the point of view of the theory to be developed in the remainder of the
present §1, perhaps the most basic example of a radial environment is the following.
We define a collection of radial data

(I, G, @)

to consist of a topological group 11 isomorphic to Ht)? , a topological group G iso-
=

morphic to Gy, and the full poly-isomorphism [cf. [IUTchI], §0] of topological
groups a : II/A = G, where we write A C II for the [group-theoretic! — cf.,

e.g., [AbsAnab], Lemma 1.3.8] subgroup corresponding to Ag? . An isomorphism
=k
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of collections of radial data (II,G,a) = (II*,G*,a*) is defined to be a pair of
isomorphisms of topological groups Il = IT*, G = G* [which are necessarily com-
patible with a, a*!]. A collection of coric data is defined to be a topological group
isomorphic to Gg; an isomorphism of collections of coric data is defined to be an
isomorphism of topological groups. The radial algorithm is the algorithm given

by the assignment
(I, G,a) —» G

— whose associated radial functor is full and essentially surjective, hence determines
a multiradial environment. Note that this example may be thought of as a sort of
formalization in the present context of the situation depicted in [IUTchl], Fig. 3.2,
at v € VP2 — ¢f. Fig. 1.2 below. Here, we recall that the topological group
“G” |which is isomorphic to G| that appears in the center of Fig. 1.2 is regarded
as being known only up to isomorphism, and that the various isomorphs of II X

that appear in the “spokes” of Fig. 1.2 may be regarded as various “arlthmetlc
holomorphic structures” on “G” [cf. [ITUTchl], Remark 3.8.1, (iii)].

gil

J

Fig. 1.2: Different arithmetic holomorphic structures on a single coric G

(ii) Recall the functorial group-theoretic algorithm
11 — (H % M']I‘M(I_D) (*TM)

of [AbsToplIIl], §3 [cf., especially, the functors kg, dan of [AbsTopllIl], Definition
3.1, (vi); [AbsToplll], Corollary 3.6, (ii); [IUTchI], Remark 3.1.2] that assigns to
a topological group II isomorphic to Ht)? an MLF-Galois TM-pair, which we shall

denote II ~ M (IT), and which is isorliqorphic to the “model” MLF-Galois TM-
pair determined by the natural action of Hg? on the ind-topological monoid (’)E. In
fact, [the union with {0} of] the underlying ’ind—topological monoid My (II) is also
equipped with a natural ring structure [cf. [AbsTopIII], Proposition 3.2, (iii)]. On
the other hand, if one is willing to sacrifice this ring structure, then there exists a
functorial group-theoretic algorithm

G — (GAO”(Q) (%)

[cf. [AbsTopllIl], Proposition 5.8, (i)] that assigns to a topological group G isomor-
phic to Gy an MLF-Galois TM-pair, which we shall denote G ~ O% (G), and which
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is isomorphic to the MLF-Galois TM-pair determined by the natural action of Gy
on the ind-topological monoid (9% . Moreover, by [AbsToplIII|, Proposition 3.2, (iv)
[cf. also Remark 1.11.1, (i), (a), below], there is a [uniquely determined] functorial
tautological isomorphism of MLF-Galois TM-pairs

~

(L~ Mpy(ID)) = (II/A~ O (II/A))|n (rrna> )

— where A C Il is as in (i), and the notation “|;” denotes the restriction of the
action of II/A to an action of II. Then another important example of a radial
environment is the following. We define a collection of radial data

(I ~ My (I1), G ~ O% (G), o)

to consist of the output data of the algorithm (xmy) associated to a topological
group 1I isomorphic to Ht)? , the output data of the algorithm () associated to a

—k
topological group G isomorphic to Gy, and the poly-isomorphism [cf. [IUTchl], §0]
of MLF-Galois TM-pairs

~

ap - (H N MTM(H)) — (G ~ O (G))’H

determined [in light of [AbsToplII], Proposition 3.2, (iv)] by the composite of the
natural surjection II — II/A with the full poly-isomorphism of topological groups
/A = G [where A C 1l is as in (i)]. An isomorphism of collections of radial data
(II ~ Mpy(II),G ~ O%(G), o) = (ITI* ~ Mpy(IT*), G* ~ O%(G*),a) is de-
fined to be a pair of isomorphisms of MLF-Galois TM-pairs (IT ~ My (1)) = (IT* ~
My (IT%)), (G ~ O™ (G)) = (G* ~ O%(G*)) [which are necessarily compatible
with o, al!]l. A collection of coric data is defined to be the output data of the
algorithm (%) for some topological group isomorphic to Gg; an isomorphism of
collections of coric data is defined to be the isomorphism between collections of
output data of (x5 ) associated to an isomorphism of topological groups. The ra-
dial algorithm is the algorithm given by the assignment

(Il ~ My (I1),G ~ O% (GQ), o) = (G ~ O%(Q))

— whose associated radial functor is full and essentially surjective, hence determines
a multiradial environment.

(iii) Let
r c z*

be a closed subgroup [cf. Remark 1.11.1, (i), (ii), below, for more on the significance
of I']. Then by considering the subgroups of invertible elements of the various ind-
topological monoids that appeared in (ii), one obtains functorial group-theoretic
algorithms

I =  (II ~ Mg, ~ID)); G —~ (Gn0*(Q)) (k)

defined, respectively, on topological groups II isomorphic to Ht)? and G isomorphic

=k
to G. Here, we note that we may think of I' as acting on the output data of the
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second algorithm of (%) by means of the trivial action on G and the natural action

of Z* on O*(G). Then one obtains another example of a radial environment as
follows. We define a collection of radial data

(I ~ My, (D), G ~ O*(G), ax)

to consist of the output data of the first algorithm of (xx) associated to a topolog-
tcal group 11 isomorphic to Ht)? , the output data of the second algorithm of (xx)

associated to a topological group G isomorphic to G, and the poly-isomorphism [cf.
[IUTchl], §0] of ind-topological modules equipped with topological group actions

ax : (I~ My, (1) = (G~ OX(G)|n

determined by the I'-orbit of the poly-isomorphism “ay|«” induced by the poly-
isomorphism ay of (ii). An isomorphism of collections of radial data (IL ~ M5, (IT),
G~ OX(G),ax) = (I* ~ M7, (1), G* ~ O*(G*), %) is defined to consist of
the isomorphism of ind-topological modules equipped with topological group actions
(IT ~ Mgy, (1)) = (II* ~ My, (IT*)) induced by an isomorphism of topological
groups II = II*, together with a I'-multiple of the isomorphism of ind-topological
modules equipped with topological group actions (G ~ O*(G)) = (G* ~ O*(G*))
induced by an isomorphism of topological groups G' = G* [so one verifies immedi-
ately that these isomorphisms are compatible with a,, o} in the evident sense]. A
collection of coric data is defined to be the output data of the second algorithm of
(xx ) for some topological group isomorphic to Gg; an isomorphism of collections
of coric data is defined to be a I'-multiple of the isomorphism between collections
of output data of (%) associated to an isomorphism of topological groups. The
radial algorithm is the algorithm given by the assignment

(IL ~ My (I, G ~ OX(GQ), ax) — (G ~ O%(G))

— whose associated radial functor is full and essentially surjective, hence determines
a multiradial environment.

(iv) By considering the subgroups of torsion elements of the various ind-topo-
logical monoids that appeared in (ii) and (iii), one obtains functorial group-theoretic
algorithms

I —  (II ~ M, ((ID)); G — (G OHG) (*p)

defined, respectively, on topological groups II isomorphic to HE? and G isomor-
=k

phic to Gy — i.e., a “cyclotomic version” of the algorithms of (k) [cf. (iii)].

Moreover, by forming the quotients Mk (=) = & MG (=) ME (=), OFH(=) &t

O*(—)/OH(—), one obtains functorial group-theoretic algorithms

I — (I~ Mph(ID)); G — (G~ O*H(G)) (¥xp)

defined, respectively, on topological groups II isomorphic to H and G isomorphic

to G — i.e., a “co-cyclotomic version” of the algorithms of ( «) [cf. (iii)]. Now
one verifies easily that
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”

by replacing the symbol “x
by the symbol “xu”,

in (iii) by the symbol “u” or, alternatively,

one obtains, respectively, “cyclotomic” and “co-cyclotomic” versions of the example
treated in (iii). In the case of “xu”, let us write

Ism(G)

for the compact topological group of G-isometries of O*#((G), i.e., G-equivariant
automorphisms of the ind-topological module O*#((G) that, for each open subgroup
H C G, preserve the “lattice” in O*#(G)H determined by the image of O*(G)?
[i.e., where the superscript “H” denotes the submodule of H-invariants]. Let

r*# C  Ism(—)

be a closed subgroup, i.e., a collection of closed subgroups of each Ism(G) that is
preserved by arbitrary isomorphisms of topological groups G; — G5. Then one
verifies easily that, in the “co-cyclotomic” version discussed above of the example
treated in (iii),

one may replace the “I'” in (iii) by such a “I'*#”.

Finally, we observe that one example of such a “I'**” — which we shall denote by
means of the notation
Ism

.,

— is the case where one takes I'** to be the entire group “Ism(—)”; another

example of such a “I'*#*” is the image Im(ix) of the natural homomorphism Z* —
Ly — Tsm.

(v) Another example of a radial environment may be obtained as follows. We
define a collection of radial data

(II ~ ME,(ID),G ~ O**(G), o x )

to consist of the output data of the first algorithm of (x,) associated to a topological
group Il isomorphic to Hg? , the output data of the second algorithm of (¥x,)

—k
associated to a topological group G isomorphic to Gy, and the poly-morphism |cf.

[[UTchl], §0] of ind-topological modules equipped with topological group actions
apxp (L My (1)) = (G~ O*H(G))n

determined by the full poly-isomorphism II/A = G [cf. (i)] and the trivial ho-
momorphism MK, (II) — O*¥(G) — i.e., the composite of the natural homomor-
phisms Mk (I1) € My, (I1) = O*(G) - O*¥(G) [where the “ = 7 arises from
the poly-isomorphism «y of (iii)]. An isomorphism of collections of radial data
(H v M'FM(H)? G OXM(G)7 O‘%XH) :> (H* ~ M’ﬁfM(H*L G* ~ OX#(G*)’ O‘tz,xu)
is defined to consist of the isomorphism of ind-topological modules equipped with
topological group actions (II ~ Mk, (1)) = (II* ~ M¥A,(II*)) induced by an
isomorphism of topological groups II = II*, together with a I'*¥-multiple of the
isomorphism of ind-topological modules equipped with topological group actions
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(G ~ O*F(@)) = (G* ~ O*H(G*)) induced by an isomorphism of topological
groups G = G* [so one verifies immediately that these isomorphisms are compat-
ible with o x ., @, «,, in the evident sense]. A collection of coric data is defined
to be the output data of the second algorithm of (x4, ) for some topological group
isomorphic to Gg; an isomorphism of collections of coric data is defined to be a
¥ -maultiple of the isomorphism between collections of output data of (¥, ) asso-
ciated to an isomorphism of topological groups. [That is to say, the definition of
the coric data is the same as in the “co-cyclotomic” version discussed in (iv).] The
radial algorithm is the algorithm given by the assignment

(I~ ME(ID), G ~ OF*(G), ap xp) — (G~ OH(G))

— whose associated radial functor is full and essentially surjective, hence determines
a multiradial environment.

(vi) By replacing the notation “M¥E (II)” in the discussion of (v) by the no-
tation “II,,(M&(II)) ® Q/Z” [cf. Propositions 1.2, (i); 1.5, (i), (iii)], one verifies
immediately that one obtains an “exterior-cyclotomic version” of the multiradial
environment constructed in (v).

(vii) In the discussion to follow, we shall also consider the functorial group-
theoretic algorithms

I = (I~ MyD)); G = (G~ OP(G) (#gp)

obtained by passing to the respective groupifications of the monoids My (IT),
O%(G), as well as the functorial group-theoretic algorithms

= (I~ MEI): G = (Gn OP(G)) (+5)

obtained by passing to the respective inductive limits of the profinite completions
of M2V (I1)7, O8P(G)Y [i.e., where the superscript “J” denotes the submodule of J-
invariants|, as J ranges over the open subgroups of IT or G. Thus, there is a natural

action of ' on the underlying ind-topological modules of MZEP (II), O@(G); by
considering the I'-orbit of the poly-isomorphism induced by the poly-isomorphism
ap of (ii), one obtains a poly-isomorphism

ag (T~ ME) 5 (GrOP(G)n

that is compatible [in the evident sense] with the poly-isomorphism a of (iii).

(viii) The following example of a radial environment is another variant of the
example of (iii). We define a collection of radial data

(I ~ My (I), G ~ O (G), ap 1)

to consist of the output data of the algorithm of (xmn) associated to a topologi-
cal group 11 isomorphic to HB? , the output data of the second algorithm of <*§f>)
¥
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[cf. (vii)] associated to a topological group G isomorphic to Gy, and the follow-
ing diagram o« of poly-morphisms of ind-topological monoids equipped with
topological group actions

(I~ Mpg(I)) < (I~ MED(IT))
%G A OO (G OO
- (G~ O*™(G))n

— where the “ < ” denotes the natural inclusion; the “ = ” denotes the poly-

143 7

isomorphism ap of (vii); the “ <= 7 denotes the natural inclusion; the “ —

denotes the natural surjection. An isomorphism of collections of radial data (II ~
Mo(ID),G ~ OF(G), ap wp) S5 (I A~ Mpy(IT), G~ OFP(G*), 0% ,,) is
defined to consist of the isomorphism of ind-topological monoids equipped with
topological group actions (II ~ Mqy(Il)) = (II* ~ Mpy(II*)) induced by an
isomorphism of topological groups II = II*, together with a I'-multiple of the
isomorphiﬁm of ind—topologicalAmodules equipped with topological group actions
(G ~ 0%P(G)) = (G* ~ 02P(G*)) induced by an isomorphism of topological
groups G = G* [so one verifies immediately that these isomorphisms are compatible
with ap xpu, af «,, In the evident sense]; here, we note that any such isomorphism

(G~ OgAp(G)) S5 (G* Og/i’(G*)) induces isomorphisms (G ~ O*(G)) = (G* ~
OX(G*)), (G ~ O (G)) = (G* ~ O*F(G*)) in a fashion compatible with as x .,
af wpu- The definition of coric data and isomorphisms of collections of coric data is

the same as in (v) [i.e., where one takes “I'"*¥” to be the image Im(I") of T" C ZX]
The radial algorithm is the algorithm given by the assignment

(IT ~ Moy(IT), G ~ OFP(G), as ) > (G~ OXH(G))

— whose associated radial functor is full and essentially surjective, hence determines
a multiradial environment.

(ix) Note that if G is a topological group isomorphic to Gg, then, in addi-
tion to G ~ O*(G), G ~ O*F((G), one may also construct the log-shell Z(G) C
O*H(@) [i.e., p~t times the image of the G-invariants of O*(G) in O**(G) —
cf. [AbsToplll], Proposition 5.8, (ii)]. In particular, if one replaces the nota-
tion “G ~ O**(G)” in the discussion of (v), (vi), and (viii) by the notation
“G O (@), Z(G) CO*H(@)) [ie., “G~ O*F(Q) equipped with its associ-
ated log-shell”], then one verifies immediately that one obtains a “log-shell version”
of the multiradial environments constructed in (v), (vi), and (viii).

Remark 1.8.1. In the context of the various examples given in Example 1.8,
(iii), (iv), (v), (vi), (vii), (viii), and (ix), it is useful to note that

no automorphism of O**(G) induced by an element of Aut(G) [e.g., an
element of G, regarded as an inner automorphism of G| coincides with an
automorphism of O*#(G) induced by an element of I' that has nontrivial
image in Z, .



42 SHINICHI MOCHIZUKI

Indeed, this follows immediately by observing that the composite with the p-adic
logarithm of the cyclotomic character of G determines [in light of the definition
of O*(G), in terms of abelianizations of open subgroups of G — cf. [AbsToplIII],
Proposition 5.8, (i)] a natural surjection O*#*(G) — Q,, which [cf., e.g., [AbsAnab],
Proposition 1.2.1, (vi)] is Aut(G)-equivariant, relative to the trivial action of Aut(G)
on Q,, and I'-equivariant, relative to the natural action of I' C 7 [via the natural

surjection Z*X —» Z)] on Qp.

Example 1.9. Radial and Coric Data III: Graphs of Functorial Group-
theoretic Algorithms.

(i) Let £ and F be categories that arise from “types of mathematical data”
[cf. the discussion of Example 1.7, (i)]; 2 : &€ — F a functor that arises from a
“functorial algorithm” [cf. the discussion of Example 1.7, (i)]. Then one may define
a new category G — that also arises from a “type of mathematical data” — as
follows: the objects of G are pairs (E,Z(F)), where E € Ob(€), and Z(F) € Ob(F)
is the image of E via Z; the morphisms of G are the pairs of arrows (f : £ —
E' Z(f) : 2(E) — E(E’)). We shall refer to G [or the “type of mathematical data”
that gives rise to G| as the graph of Z. Note that this construction was applied, in
effect, in the discussion of the various radial environments constructed in Example
1.8. Finally, we observe that we have natural functors € — G [given by E
(E,Z(E))], G — & [given by (E,Z(E)) + E], G — F [given by (E,Z(E)) — Z(E)].

(ii) In the notation of (i), suppose that £ is the category of topological groups

isomorphic to Hg? and isomorphisms of topological groups, and that = is some
—k
“functorial group-theoretic algorithm” [whose input data consists of a topological

group isomorphic to Iy P ] Let (R,C, ®) be the radial environment of Example 1.8,

(i). Then composing the functor R — € given by the assignment (II, G, «) — II
with Z : £ — F yields a functor R — F, whose graph we denote by RT. Thus, by
considering the natural functors ¥ : R — R [cf. (i)], RT — R — C, and taking

¢t L' ¢, we obtain a diagram as in the display of Example 1.7, (iv). Since (R,C, ®)
is a multiradial environment, it thus follows that Ux is multiradially defined |cf.
Example 1.7, (iv)]. That is to say, by using the radial environment of Example 1.8,
(i), one concludes that

any “functorial group-theoretic algorithm” whose input data consists of a

topological group isomorphic to Ht)? gives rise — in a tautological fashion
=k

[cf. the discussion of tautological multiradializations in Example 1.7, (ii)]

— to a multiradially defined functor.

This approach will be discussed further in Remark 1.9.1 below.

(iii) On the other hand, one may also construct a radial environment as follows.
We define a collection of radial data to be a topological group II isomorphic to HE? ,

and an isomorphism of collections of radial data to be an isomorphism of topologlcal
groups. The definitions of coric data and isomorphisms of collections of coric data
are the same as in Example 1.8, (i). The radial functor ® : R — C is defined via the
assignment II — II/A [cf. the notation of Example 1.8, (i)]. Thus, ® fails to be full
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[cf., e.g., [AbsToplll], §I3; [AbsToplIIl], Remark 1.9.1]. That is to say, (R,C,®) is a
uniradial environment. Now suppose that = : £ — F is as in (ii). Then since R may
be identified with £, the graph of Z: R = £ — F yields a category R' equipped
with natural functors Ux : R — R, & : Rt - R — Cf e m particular, we
obtain a diagram as in the display of Example 1.7, (iv). Since (R,C, ®) is a uniradial
environment, it thus follows that Wx is uniradially defined [cf. Example 1.7, (iv)].

That is to say, by using the radial environment just defined, one concludes that

any “functorial group-theoretic algorithm” whose input data consists of a
topological group isomorphic to Htxl? also gives rise — in a tautological

fashion — to a wuniradially defined fﬂlﬁctor.

This approach will be discussed further in Remark 1.9.1 below.

(iv) Let II be a topological group isomorphic to HE? ; A C II the subgroup

=k
of Example 1.8, (i). Recall the isomorphism “u=(Gjx) = p(x)” of [AbsToplll],
Corollary 1.10, (c), which is constructed by means of a “functorial group-theoretic
algorithm”. The inverse of this isomorphism yields a cyclotomic rigidity isomor-
phism
(1 A0)(IT) 3 p(IT/A)

[cf. the discussion of Proposition 1.3, (ii)] — where we write “(I - Ag)(I)” for
the [group-theoretic!] subquotient of II discussed in [EtTh], Corollary 2.18, (i).
Thus, in summary, one has a “functorial group-theoretic algorithm” whose input
data consists of the topological group II, and whose output data may be thought of
as consisting of II, the two topological II-modules “(I - Ag)(II)”, “Hi(H/A)”7 and
the above isomorphism of IT-modules (I - Ag)(II) = p(II/A). Thus, if one takes
this “functorial group-theoretic algorithm” to be the algorithm that gives rise to
the functor = in the discussion of (ii) and (iii), then one concludes that the above
cyclotomic rigidity isomorphism (I - Ag)(II) = p(11/A) may be thought of as
giving rise to either

(a) a multiradially defined functor, via the approach of (ii), or
(b) a wniradially defined functor, via the approach of (iii).

On the other hand, there is also another way to obtain a multiradially defined
functor from this cyclotomic rigidity isomorphism, as follows. Let (R,C,®) be the
multiradial environment of Example 1.8, (i). Now define a collection of daggered
radial data

(I, o, (- Ae)(IT) 5 p5(G)

to consist of radial data (11, G,«) as in Example 1.8, (i), together with the poly-
isomorphism (I - Ag)(I1) = p(G) obtained by composing the above cyclotomic
rigidity isomorphism “(I-Ag)(II) = p(11/A)” with the poly-isomorphism p(II/A)
= p=(G) induced by the poly-isomorphism « : II/A 5 @G. Thus, the poly-
isomorphism (I - Ag)(II) = p=(G) consists not of a single isomorphism of topo-
logical modules, but rather of an Aut(G)-orbit — or, more precisely, a I'-orbit,

where I' C Z* is the image of Aut(G) via the cyclotomic character on Aut(G) [cf.
[AbsAnab], Proposition 1.2.1, (vi)] — of isomorphisms of topological modules. An
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isomorphism of collections of daggered radial data is defined to be an isomorphism
between the underlying collections of radial data [which is necessarily compatible
with the poly-isomorphism of topological modules that constitutes the final member

of the collections of daggered radial data in question]. Thus, if we take CT def C, then
the “functorial group-theoretic algorithm” that gives rise to the cyclotomic rigid-
ity isomorphism “(I - Ag)(II) = po(I1/A)” yields a functor g @ R — R [that
arises from a “functorial algorithm”], together with a diagram as in the display of
Example 1.7, (iv). That is to say,

(¢) this multiradially defined functor U : R — R yields an alternative [i.e.,
relative to (a)] multiradial approach to representing the “functorial group-
theoretic algorithm” that gives rise to the cyclotomic rigidity isomorphism

“(1- Mo )(T) 5 p=(TT/A)".
This is the approach taken in Corollary 1.11, (b), below.

Remark 1.9.1. In general, the portion of the “functorial group-theoretic algo-
rithm” that appears in the discussion of Example 1.9, (ii), (iii), and (iv), which
involves the quotient II/A of II will depend not only on the structure of the ab-
stract topological group underlying II/A, but also on the structure of II/A as a
quotient of IT — i.e., from the point of view of the discussion of Example 1.8, (i), on
the “arithmetic holomorphic structure” on the topological group II/A determined
by this quotient structure. In fact, the original motivation for the introduction of
the “multiradial terminology” of Example 1.7 was precisely to study the extent to
which such “functorial group-theoretic algorithms” could be formulated in such a
way as to compute

which portions of the output data of such algorithms do indeed depend
in an essential way on the “arithmetic holomorphic structure” and
which portions are “mono-analytic” [cf. [AbsToplIll], §13], i.e., depend
only on the structure of the topological group II/A [which one thinks of as
a sort of “underlying arithmetic real analytic structure” of the “arithmetic
holomorphic structures” involved].

From this point of view, the tautological approach of Example 1.9, (ii) [i.e., Example
1.9, (iv), (a)], may be thought of as expressing the idea that if one thinks of each
of the quotients “II/A” in the “spokes” of Fig. 1.2 as being equipped with a fized
“arithmetic holomorphic structure” and hence only related to the coric “G” via some
ideterminate isomorphism of topological groups, then one obtains a multiradially
defined functor, i.e., a functor that is tautologically compatible with mono-analytic
deformations of the various “arithmetic holomorphic structures” that one might
impose on the coric “G”. Put another way, this multiradially defined algorithm is
an algorithm that is tautologically compatible with simultaneous execution on
multiple spokes of Fig. 1.2. By contrast, the tautological approach of Example
1.9, (iii) [i.e., Example 1.9, (iv), (b)], may be thought of as expressing the idea that
if one tries to identify the various quotients “II/A” in the “spokes” of Fig. 1.2 via
arbitrary mono-analytic isomorphisms, then one only obtains a uniradially defined
functor, i.e., a functor that fails to be compatible with mono-analytic identifications
i.e., gluing isomorphisms| of the various “arithmetic holomorphic structures” on
the coric “G”. Put another way, this uniradially defined algorithm is an algorithm



INTER-UNIVERSAL TEICHMULLER THEORY II 45

that can only be consistently erecuted on one spoke at a time. Finally, the ap-
proach of Example 1.9, (iv), (c), expresses the idea that, in the case of the particular
cyclotomic rigidity isomorphism under consideration, if one weakens the rigidity of
this isomorphism by working with this isomorphism up to a certain indeterminacy,
then one may construct a multiradially defined functor, i.e., a functor that is indeed
compatible with mono-analytic identifications [i.e., gluing isomorphisms] of the var-
ious “arithmetic holomorphic structures” on the coric “G”, albeit up to a certain
specified indeterminacy. Thus, the multiradiality obtained in Example 1.9, (iv),
(c), depends, in an essential way, on the content of the “functorial group-theoretic
algorithm” involved. This approach taken in Example 1.9, (iv), (c), is representa-
tive of the approach taken in Corollaries 1.10, 1.11, and 1.12 below, which may be
thought of as “computations” of the “certain indeterminacy” that one must
allow in order to construct a multiradially defined functor as in Example 1.9, (iv),

().

Remark 1.9.2.

(i) One way to summarize the discussion of Remark 1.9.1 is as follows. If
uniradially defined functors correspond to constructions that depend, in a strict
sense, on the “arithmetic holomorphic structure”, while corically defined functors
correspond to constructions that only depend on the underlying mono-analytic
structure [i.e., “arithmetic real analytic structure”], then multiradially defined
functors correspond to constructions that depend on the “arithmetic holomorphic
structure”, but only in a fashion that is

compatible with a given description of how this arithmetic holomorphic
structure 1s related to — e.g., “embedded in” — the underlying mono-
analytic structure.

For instance, in the various multiradial environments of Example 1.8, this descrip-
tion of the relation to the underlying mono-analytic structure is given, at a concrete
level, by the various poly-morphisms [or diagrams of poly-morphisms] “ci(_y” that
appear in the radial data of these multiradial environments. This point of view is
summarized in Fig. 1.3 below.

(i) From the point of view of the analogy with connections discussed in Remark
1.7.1, one may think of a multiradial environment as a structure that allows one to
execute parallel transport operations between distinct arithmetic holomorphic
stuctures, i.e., to describe what one arithmetic holomorphic structure looks like
from the point of view of a distinct arithmetic holomorphic structure that is only
related to the original arithmetic holomorphic structure via the mono-analytic core.

(iii) From the point of view of the analogy with connections discussed in Re-
mark 1.7.1, it is also interesting to observe that one may think of the different ap-
proaches to multiradiality discussed in Example 1.9, (iv), (a), (c), as being roughly
analogous to the phenomenon of distinct connection structures on a single
fibration. Moreover, of these different approaches, the tautological, “general non-
sense” approach of Example 1.9, (iv), (a), is, in some sense, [not surprisingly!| the
“least interesting” [although it will at times be of use in the theory of the present
series of papers!]. This sort of “general nonsense” approach is reminiscent of the
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tautological approach to constructing connections that occurs in the p-adic theory
of the crystalline site, i.e., by simply forming the tensor product with

the ring of functions of the PD-envelope along the diagonal of the fiber
product of two copies of the space under consideration.

From the point of view of the issue of “describing what one arithmetic holomorphic
structure looks like from the point of view of another” [cf. (ii)], the “tautological”
approach is not very interesting precisely because it involves working, in effect, with

the “tautological” collection of “labels of all possible arithmetic holo-
morphic structures” — i.e., corresponding to the various choices of one
particular arrow among the arrows that constitute the poly-morphism
denoted “a” in Example 1.8, (i) — without describing in further, more
explicit terms what these various “alien” arithmetic holomorphic struc-
tures look like relative to structures determined by a given arithmetic
holomorphic structure.

By contrast, the “non-tautological” approach to multiradiality of Example 1.9, (iv),
(c), by means of the explicit computation of indeterminacies is much more
interesting in that it yields a more detailed, explicit description of a structure [e.g.,
a cyclotomic rigidity isomorphism]| associated to an “alien” arithmetic holomorphic
structure in terms of the structure associated to a given arithmetic holomorphic
structure.

abstract general inter-universal classical complex
nonsense Teichmiiller theory Teichmiiller theory
uniradially arithmetic holomorphic holomorphic
defined functors structures structures
arithmetic holomorphic holomorphic
multiradially structures described in structures described in
defined functors terms of underlying terms of underlying
mono-analytic structures real analytic structures
corically underlying mono-analytic underlying real analytic
defined functors structures structures

Fig. 1.3: Uniradiality, Multiradiality, and Coricity
We now proceed to discuss our main results concerning multiradiality.

Corollary 1.10. (Multiradial Mono-theta Cyclotomic Rigidity Isomor-
phisms) Write (R,C,® : R — C) — i.e., in the notation of Example 1.8, (v),
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(vi),
(I~ IL(MO (1) © Q/Z, G~ O H(G), )+ (G~ OFH(G))

— for the multiradial environment constituted by the exterior-cyclotomic
version [cf. Example 1.8, (vi)] of the multiradial environment discussed in Example
1.8, (v). Consider the cyclotomic rigidity isomorphism

(1 Ae)(IT) = L, (M(I1)) (<o)

[where we identify (I-Ae)(MO(IT)) with (I-Ae)(I1) — cf. Proposition 1.4] obtained
by composing the functorial algorithm IT1 — MO (I1) of Proposition 1.2, (i) [cf. also
Proposition 1.5, (i)], with the functorial algorithm for constructing a cyclotomic
rigidity isomorphism of Proposition 1.5, (iii). Then the data consisting of the topo-
logical group 11, the topological I1-modules constituted by the domain and codomain
of (xmono-©) " and the isomorphism (¥1°"°9) determines a functor R — F [i.e.,
where F denotes the category defined in the evident way so as to accommodate the
data just listed] which arises from a functorial algorithm in the topological group
I1; denote the corresponding graph [cf. Example 1.9, (i)] by R'. In particular, the
resulting natural functor Vg : R — R [cf. Ezample 1.9, (i)] is multiradially
defined.

Proof. The various assertions of Corollary 1.10 follow immediately from the defi-
nitions involved. ()

Remark 1.10.1. We recall in passing that the domain and codomain of the iso-
morphism (x1°1-©) of Corollary 1.10, as well as the isomorphism (x1°n°-€) jtself,
are constructed from various subquotients of [the projective system of topological
groups] Aye ) which are completely determined by the structure of Aye ) as
a projective system of topological groups, the subgroups of Aye ) determined by
the images of the “theta section” portions of the system of mono-theta environ-
ments MO (IT), and the images [arising from the natural outer actions involved
— cf. Definition 1.1, (i)] of (I - Z)(M2(II)) and G(MZ(II)) in Out(Aye ). In-
deed, the algorithms described in the proofs of [EtTh], Corollary 2.18, (i), (iii);

[EtTh], Corollary 2.19, (i), for constructing the various subquotients of Ape )
corresponding to the domain and codomain of (x1°"©) as well as to the graph
of the isomorphism (*ﬁono‘@) itself, depend only on the structure of the projective
system of topological groups Aye ) [cf., e.g., [EtTh], Proposition 2.11, (i)], the
subgroups of Aye ) determined by the images of the “theta section” portions of
the system of mono-theta environments M (I) [cf. [EtTh], Definition 2.13, (ii),
(¢)], and the construction of the group A¢(IT) [which was reviewed in Proposition
1.6, (i)] containing (Aye ) —) Ay (MO (1)) € Ax (M (II)) = A, which is used to
construct the various Subquotients_that appear in the crucial [EtTh], Proposition
2.12; [EtTh], Proposition 2.14, (i).

Remark 1.10.2. In words, the content of Corollary 1.10 may be understood as
follows:
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Since O** (@) is constructed by forming the quotient of O*(G) by the
roots of unity [i.e., O¥(G)] — recall the triviality of the homomorphism
1, (MO(I)) ® Q/Z — O*K(G) [cf. Example 1.8, (v), (vi)]! — any rigidifi-
cation of the cyclotome II,, (M (II)) that depends only on the structure
of the mono-theta-environment MO (II) will be tautologically com-
patible with the coricity of O*#(G), i.e., with the “sharing of O*H*(G)”
by distinct arithmetic holomorphic structures [cf. the discussion of Remark
1.9.1; Fig. 1.4 below].

This contrasts sharply with the situation to be considered in Corollary 1.11 below
— cf. Remarks 1.11.3, 1.11.4, below. A similar statement may be made concerning
the subquotient (I - Ag)(II) of A C II, which maps trivially to II/A = G.

gl

J

o G~ OXB(G) A TH —

T

IT

=117
7

Fig. 1.4: A single coric pair G ~ O*H(G), regarded up to the action of I'*#

Remark 1.10.3. In the context of Corollary 1.10, it is useful to recall the
following [cf. the discussion of [EtTh|, Remark 1.10.4, (ii)]. Although at first
glance, it might appear as though it might be possible to develop a similar theory
to the theory developed in the present series of papers based on a more general
sort of meromorphic function than the theta function, it is by no means clear
that such a more general meromorphic function satisfies the crucial cyclotomic
rigidity, discrete rigidity, and constant multiple rigidity properties studied
in [EtTh]. Of these properties, the cyclotomic rigidity property, which forms the
basis of Corollary 1.10, depends most explicitly [cf. [EtTh], Remark 2.19.2] on
the structure of the theta quotient 1 — Ag — A§ — A} — 1 reviewed in
[[UTchI], Remark 3.1.2, (iii) [cf. also the discussion of Remark 1.1.1 of the present
paper|, i.e., which corresponds to the “theta group” in more classical treatments
of the theta function. Since the theta function is, roughly speaking, essentially
characterized among meromorphic functions by the property that it satisfies the
“theta symmetries” arising from the theta group, it is thus difficult to see how
to generalize the theory of the present series of papers so as to treat more general
meromorphic functions than the theta function [cf. Remark 1.1.1, (v); [IUTchIII],
Remark 2.3.3, for a more detailed discussion of related issues|. Also, in this context,
it is useful to recall that unlike the theta function itself, which is strictly local
in nature [i.e., in the sense that it is only defined, a priori, at v € V"], the
theta quotient A, hence, in particular, the subquotient Ag, is defined globally [cf.
the discussion of [IUTchI|, Remark 3.1.2] over the various number fields involved,
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hence may be applied to the execution of various global anabelian reconstruction
algorithms via the “©-approach” [cf. [IUTchI|, Remark 3.1.2].

Corollary 1.11. (Multiradial MLF-Galois Pair Cyclotomic Rigidity
Isomorphisms with Indeterminacies) Write (R,C,® : R — C) — i.e., in the
notation of Example 1.8, (viii),

(I~ Mrga(T1), G ~ O (G), ) = (G ~ OXH(G))
— for the multiradial environment discussed in Example 1.8, (viii). Consider

(a) the T-orbit [where we recall that T' C Z% is a closed subgroup]
~ def s-Ga.
17(G) = pz(0*(G)) = Hom(Q/Z, 0*(G)) Cersy

of the cyclotomic rigidity isomorphism obtained by applying to the
MLF-Galois pair determined by G ~ O%(G) the algorithm applied to
construct [the inverse of] the isomorphism “po(Mrwm) = po(G) 7 in [Ab-
sToplll], Remark 3.2.1 [cf. the discussion of Proposition 1.3, (ii)]; and

(b) the Aut(G)-orbit [where we recall from [AbsAnab], Proposition 1.2.1,
(vi), that Aut(G) admits a natural cyclotomic character] of isomorphisms

p5(G) = (1-Ae)(IT) (&™)

obtained by composing the poly-isomorphism induced by applying “u/Zs(—) 7
to the [inverse of the] full poly-isomorphism of topological groups « :
/A = G [c¢f. Ezample 1.8, (i)] with the natural isomorphism “ps(Gr)
= p=(Ix )" of [AbsToplll], Corollary 1.10, (c) [cf. the discussion of
Proposition 1.3, (ii)].

Then the data consisting of the triple (I1, G, &) [cf. Example 1.8, (i)], the topological

G-modules constituted by the domain and codomain of (*gsfal), the topological 11-

module constituted by the codomain of (x&1F™), and the poly-isomorphisms (x&S™)
and (*%S:I%;al) determines a functor R — F which arises from a functorial algorithm
in the triple (II, G, «); denote the corresponding graph [cf. Example 1.9, (i)] by
RT. In particular, the resulting natural functor ¥r : R — RV [cf. Example 1.9,

(i)] is multiradially defined.

Proof. The various assertions of Corollary 1.11 follow immediately from the defi-
nitions involved. ()

Remark 1.11.1.

(i) In the context of Corollary 1.11, it is useful to recall that:

(a) the group of automorphisms of the underlying ind-topological monoid
equipped with a topological group action — i.e., in the terminology of
[AbsToplll], Definition 3.1, (ii), MLF-Galois TM-pair — of

G~ O”(G)
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maps bijectively [i.e., by forgetting “O% (G)”] onto the group of automor-
phisms of the topological group G [cf. [AbsToplll], Proposition 3.2, (iv)];

(b) the group of automorphisms of the underlying ind-topological module
equipped with a topological group action — i.e., in the terminology of
[AbsToplll], Definition 3.1, (ii), MLF-Galois TCG-pair — of

G~ 0X(G)

maps surjectively [i.e., by forgetting “O*(G)”] onto the group of auto-
morphisms of the topological group G, with kernel given by the [G-linear]
automorphisms of [the underlying ind-topological module of] O*(G) de-
termined by the natural action of 7% [cf. [AbsToplII], Proposition 3.3,
(i)
Also, we observe that by the same proof involving the Kummer map as that given
for (b) in [AbsTopllIl], Proposition 3.3, (ii), it follows that

(c) the group of automorphisms of the underlying ind-topological module
equipped with a topological group action of

G ~ O (G)

maps surjectively [i.e., by forgetting “O*‘v’Ap(G)”] onto the group of auto-
morphisms of the topological group G, with kernel given by the [G-linear]

o~

automorphisms of [the underlying ind-topological module of] O%P(G) de-
termined by the natural action of 7> [or, equivalently, maps bijectively
onto the group of automorphisms of the underlying ind-topological mod-
ule equipped with a topological group action of G ~ O*(G) — cf. (b)].

On the other hand, one verifies immediately that

(d) the underlying ind-topological module of O*¥(G) is divisible, hence
admits a natural action by Q.

In particular, if, in (b), one replaces “O*” by “O*#”, then the resulting description
of the kernel is false.

(ii) In the present series of papers, we shall primarily be interested in Corollary
1.11 in the case where N
r=2z2".

That is to say, allowing for a I" (= 7> )-multiple indeterminacy corresponds precisely
to working, in the case of G ~ O*(G), with the underlying ind-topological module
equipped with topological group action [cf. (i), (b)].

Remark 1.11.2.

(i) Observe that, in the context of the discussion of Remark 1.11.1, (i), (b),
the natural action of Z* on [the underlying ind-topological module equipped with
a topological group action of] G ~ O*(G) is compatible with pull-back via the
composite of the natural surjection IT — II/A with any isomorphism II/A = G [cf.
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the notation of Example 1.8]. That is to say, one has a natural action of A [the
underlying ind-topological module equipped with a topological group action of] the
resulting pair II ~ O*(G). Observe, moreover, that this action of 7> fails to be
compatible with the ring structure on O* (G)®Q [i.e., the ring structure determined
by applying the p-adic logarithm]|. That is to say, even though this ring structure
on “O*” may [unlike the case with G!| be reconstructed from the topological group

IT [cf. [AbsToplll], Theorem 1.9], the natural action of Z* on I1 ~ O*(G) fails to
preserve the ring structure reconstructed from II.

(ii) The observations of (i) are of interest in the context of understanding our
adoption of “G” as opposed to “II” in the construction of the “©-link” between
distinct ©-Hodge theaters given in [IUTchI], Corollary 3.7. That is to say, even if one
tries to “force a preservation of arithmetic holomorphic structures” between distinct
©-Hodge theaters by working with “II ~ O*(G)” instead of “G ~ O*(G)”, this
does not result in the establishment of a consistent common arithmetic holomorphic
structure for distinct ©-Hodge theaters, since the establishment of such a consistent
common arithmetic holomorphic structure is already obstructed by the fact that
distinct ©-Hodge theaters only share a common “O*” [cf. [IUTchl], Corollary 3.7,
(iii)] — on which Z* acts [cf. (i)] — i.e., as opposed to a common “O>”. Here, we
recall that the establishment of a common “O% 7 is obstructed, in a quite essential
manner, by the “valuative portion T@v g 7 of the ©-link [cf. [IUTchI], Remark

- = =v

3.8.1, (i)].

Remark 1.11.3.

(i) In some sense, the starting point of any discussion of radial environments is
the description of the radial functor, i.e., the specification of “which portion of the
radial data one takes for one’s coric data”. From the point of view of the theory
of [IUTchI], §3 [cf., especially, the portion at v € V@ of [IUTchI], Corollaries 3.7,
3.9], the coric data should, in particular include the quotient II — II/A = G of the
topological group II isomorphic to H 2 that appears in a ©- Hodge theater. On the

other hand, in [TUTchIII], we shall ultlmately be interested in applying the theory
of [AbsTopIII], §3, §5, in which various objects [such as “I ~ Mqmy(II)”, “G ~
O (G)”, “G ~ O*(Q)", etc.] are constructed group-theoretically from IT or G. One
important aspect of the theory of [AbsToplIlI], §3, §5, is that after these objects
are constructed group-theoretically from II or G, one then proceeds to forget the
“anabelian structure” of these objects, i.e., one forgets the data consisting of
the way in which these objects [such as MLF-Galois TM-pairs, MLF-Galois TCG-
pairs, etc.] are constructed from IT or G. From the point of view of the issue of
“specification of coric data”, if one takes, for instance, “G” to be a part of one’s coric
data, then any objects constructed group-theoretically from GG may also be regarded
naturally as constituting a portion of the coric data — so long as one regards
these objects as being equipped with the corresponding “anabelian structures” [i.e.,
the data that specifies the way in which they were constructed group-theoretically
from G]. On the other hand, once one forgets these anabelian structures, it is no
longer the case that such an object may also be regarded naturally as constituting
a portion of the coric data. That is to say, once one forgets the anabelian structure
of such an object, it is necessary to specify explicitly that such an object is to
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be regarded as a portion of the coric data, i.e., as a portion of the radial data that
is to be subject to the “gluing”, or “identification”, discussed in Example 1.7,

(v).

(ii) In light of the “coricity of O*” given in [IUTchI|, Corollary 3.7, (iii), in
addition to “G”, it is possible to take the underlying MLF-Galois TCG-pair of
“G ~ O*(G)” to be part of one’s coric data. By applying Remark 1.11.1, (i), (b),
it follows that this amounts to working with “G ~ O*(G)” up to an (Aut(G),T" (=
Zx ))-indeterminacy — where we recall from Remark 1.8.1 that the p-adic portion of
the I'-indeterminacy cannot be subsumed into the Aut(G)-indeterminacy [i.e., which
arises from the fact that G is only known up to isomorphism as a topological group].
This situation is precisely the situation formulated in Example 1.8, (iii). On the
other hand, as we saw already in Corollary 1.10 [cf. Remark 1.10.2], and as we shall
see again in Corollary 1.12 below, in order to construct certain multiradially defined
functors that will be of substantial importance in the development of the theory
of the present series of papers, it is necessary to form the quotient of “O*(—)” by
its torsion subgroup “OM(—)7, i.e., to work with “O*#(—)”, rather than “O*(—)”.
Here, we note [cf. Example 1.8, (ix); Remark 1.11.1, (i), (d)] that one does not
wish here to work solely with the underlying ind-topological module equipped with
topological group action determined by “G ~ O*¥(G)”. On the other hand, by
applying [IUTchI|, Corollary 3.7, (iii), together with Remark 1.11.1, (i), (b), one
concludes that it is possible

to glue together, in a consistent fashion, the various “G ~ O*H*(G)” [cf.
Fig. 1.4] arising from distinct ©-Hodge theaters up to an (Aut(G),I' (=
7*))-indeterminacy
[where again we recall from Remark 1.8.1 that the p-adic portion of the I'-indeter-
minacy cannot be subsumed into the Aut(G)-indeterminacy|. This sort of situation
is formulated in the radial environments of Example 1.8, (v), (vi), (viii), (ix) [i.e.,

where one takes “I'’**” to be the image Im(I") of I']. One important point in this
context is that even if one takes “G ~ O**(G)” [i.e., as opposed to “G ~ O (G)”,

“G ~ 0P (G)”, or “G ~ O*(G)”] as one’s coric data, the condition of compatibility
with respect to the natural maps

O (G) > OX(G) — OH(Q)
[cf. Example 1.8, (viii)] implies that

the (Aut(G),I' (= zx))-mdetermmacy on ‘G ~ O*P(G)” induces a
(Aut(G),T (= ZX))-indeterminacy on “G ~ O*(G)” and “G ~ O (G)”

— where one may think of the “I'-indeterminacy on O®P((G)” as representing the
‘T'-indeterminacy in the specification of the submonoid O% (G) C O8P(G)”. It is
precisely these indeterminacies that induce the indeterminacies — i.e., “orbits” —
that appear in Corollary 1.11, (a), (b), in sharp contrast to the “strict cyclotomic
rigidity” [i.e., without any indeterminacies| of Corollary 1.10 [cf. Remark 1.10.2].

(iii) Note that the algorithms applied to construct cyclotomic rigidity iso-
morphisms in Corollaries 1.10 and 1.11, (a), are obtained by composing with a
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group-theoretic construction algorithm an algorithm whose input data is “post-
anabelian” — i.e., consists of a type of mathematical object that arises upon
forgetting the anabelian structure determined by the group-theoretic construction
algorithm. More concretely, this post-anabelian input data consists of a system of
mono-theta environments in the case of Corollary 1.10 and of an MLF-Galois TM-
pairin the case of Corollary 1.11, (a). As discussed in (ii), the indeterminacies that
act on this post-anabelian input data induce the indeterminacies — i.e., “orbits”
— that appear in Corollary 1.11, (a), (b). Put another way,

(a) the indeterminacies — i.e., “orbits” — that appear in Corollary 1.11, (a),
(b), are a consequence of the highly nontrivial relationship [cf. the dis-
cussion of (ii)] between the input data “O% (—)” of the cyclotomic rigidity
algorithm involved and the coric data “O**(—)".

By contrast,

(b) the “strict cyclotomic rigidity” asserted in Corollary 1.10 is a consequence
[cf. Remark 1.10.2] of the triviality of the homomorphism that relates
the cyclotomic portion of “O%(—)” — which is the only portion of
“O%(—)” that appears in a mono-theta environment — to the coric
data “O*H(—)".

Here, it is important to note that although frequently in discussions of various “re-
construction algorithms” [such as group-theoretic reconstruction algorithms], em-
phasis is placed on the existence of “some” reconstruction algorithm, the present
discussion of the multiradiality of cyclotomic rigidity isomorphisms in the con-
text of Corollaries 1.10, 1.11 yields an important example of the phenomenon that
sometimes not only the existence of “some” reconstruction algorithm, but also the
content of the reconstruction algorithm [cf. the discussion of [IUTchIV], Example
3.5] is of crucial importance in the development of the theory.

(iv) Here, we note in passing that one may eliminate the (Aut(G),T')-indeter-
minacy of Corollary 1.11, (a), (b), by working, in the fashion of Example 1.9, (iv),
(b), with uniradially defined functors [that is to say, in the case of Corollary
1.11, (a), (b), replacing “G ~ O%(G)” by “II ~ My (II)” and “G” by “II/A” and
working with the uniradial environment corresponding to the assignment

(IT ~ Mqy(I0)) + (II/A ~ Mpk (I1))

— i.e., for which the definition of the coric data coincides with the definition of the
coric data of the multiradial environment in the statement of Corollary 1.11].

(v) The reason [cf. the discussion of (iii)] that we wish to consider cyclotomic
rigidity algorithms whose input data is post-anabelian is that we wish to be able
to apply the same algorithms to input data that does not necessarily arise from a
group-theoretic construction algorithm — e.g., to input data that arises from the
[divisor and rational function] monoid portion of a Frobenioid, as in Proposition
1.3. In the context of Proposition 1.3, the exterior cyclotome of the mono-theta en-
vironment that appears in Corollary 1.10 and the cyclotome arising from “O% (—)”
that appears in Corollary 1.11, (a), both correspond to the same cyclotome “pun(S)”
[which arises from the monoid portion of the Frobenioid involved]. On the other
hand, at the level of construction algorithms, in order to relate the exterior cyclo-
tome “IL,(M& (IT))” of Corollary 1.10 to the cyclotome “pz(0*(G))" of Corollary
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1.11, (a), it is necessary [cf. Proposition 1.3, (iii)] to pass through the cyclotome
“(1-Ag)(II)” by applying the cyclotomic rigidity isomorphisms of Corollaries 1.10,
1.11 — which, in the case of Corollary 1.11, results in various indeterminacies. Put
another way, the Frobenioid-theoretic identification [i.e., via “pn(S)”] of Proposi-
tion 1.3 between the cyclotomes “II,(M®(II))”, “u(0*(G))" of Corollaries 1.10;
1.11, (a), may be thought of either as being only uniradially defined [cf. (iv)],
or as multiradially defined, but only up to certain indeterminacies.

Remark 1.11.4.

(i) One way to understand the significance of the cyclotomic rigidity isomor-
phism obtained in Corollary 1.10 — i.e., of the triviality of the homomorphism that
relates the cyclotomic portion of “O%(—)” to the coric data “O*H(—)” [cf. Remark
1.11.3, (iii), (b)] — relative to the cyclotomic rigidity isomorphism of Corollary 1.11,
which involves substantial indeterminacies arising from the highly nontrivial re-
lationship between the input data “O%(—)” of the cyclotomic rigidity algorithm
involved and the coric data “O**(—)” [cf. Remark 1.11.3, (iii), (a)], is as a sort of

splitting, or decoupling, that serves to separate the “purely radial
data” that appears in the cyclotomic rigidity isomorphism of Corollary
1.10 from the “purely coric data” constituted by “O*H(—)".

This point of view is discussed further in Remark 1.12.2, (vi), below.

(ii) From the point of view of the discussion of Remark 1.9.2, (iii), the “purely
radial data” that appears in the cyclotomic rigidity isomorphism of Corollary 1.10
depends on the tautological collection of “labels of all possible arithmetic holo-
morphic structures”. That is to say, the algorithms of Corollary 1.10 do not give
rise to a “detailed, explicit description” of these labels in terms of the “purely coric
data O*¥(—)”. On the other hand, one may also consider a modified version of
Corollary 1.10 in which

(*) one replaces “O**(—)” by “O*(—)" [i.e., so that the crucial triviality
discussed in Remark 1.11.3, (iii), (b), no longer holds!] and applies the
tautological approach discussed in Example 1.9, (iv), (a), to construct-
ing the cyclotomic rigidity isomorphism [without indeterminacies!| under
consideration.

If one works with this modified version (%), then the codomain of the cyclotomic
rigidity isomorphism under consideration may be thought of as the submodule
“OH (=) of the “purely coric data O*(—)”, equipped with a “certain rigidity” that
depends on the choice of an element of the collection of “labels of all possible
arithmetic holomorphic structures”. That is to say, whereas Corollary 1.10 has
the drawback of being “not entirely free of label-dependence”, the significance of
Corollary 1.10 [as stated!] relative to the tautological modified version (x) lies in
the fact that the label-dependence inherent in Corollary 1.10 is confined to the
“purely radial component” of the splitting, or decoupling, discussed in (i) — i.e.,
unlike the case with (%), the algorithms of Corollary 1.10 yield a “purely coric
component” that is free of such “unwanted” label-dependent data. Thus,
in summary, unlike the case with (x), the algorithms of Corollary 1.10 yield out-
put data equipped with a splitting, or decoupling, into label-dependent [i.e.,
“purely radial”’] and label-independent [i.e. “purely coric”] components.
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Remark 1.11.5. Suppose that we are in the situation of Corollary 1.11.

(i) Recall the natural surjection
H (G, p5(G)) — L

— which is constructed via a functorial group-theoretic algorithm in [AbsToplIll],
Corollary 1.10, (b). That is to say, when G = Gy, this surjection is the surjection
determined by the valuation of k£ on the image of the natural Kummer map

kX — Hl(Gk, /J/Z\(Gk))

— where we recall that the image of this Kummer map is equal to the inverse image
of Z C 7 via the surjection under consideration. In particular, the existence of this
functorial group-theoretic algorithm implies that the data consisting of this natural
surjection — hence, in particular, its kernel, i.e., “O}” — may be formulated as a
corically, hence, in particular, as a multiradially [cf. Example 1.7, (iv)], defined
functor. [We leave the routine details to the reader.]

(ii) On the other hand, if one applies the isomorphisms (*%S’fal) [cf. also the

poly-isomorphism «;. of Example 1.8, (ii)] and (*E’i‘ﬁ}al), of Corollary 1.11, then the
natural surjection of (i) gives rise to natural surjections

HY(G, ps( My (1)) — Z; - HY(G, (I Ae)(II)) — Z

— which yield data that may be formulated either as a uniradially defined functor
[cf. Remark 1.11.3, (iv)] or, when considered up to a Z* -indeterminacy, as a
multiradially defined functor [cf. Corollary 1.11]. In particular, the kernels of
these natural surjections yield data that may be formulated as a multiradially
defined functor. [We leave the routine details to the reader.]

Remark 1.11.6.  The importance of cyclotomic rigidity in the theory of the
present series of papers is interesting in light of the analogy between the ideas of
the present series of papers and the p-adic Teichmiiller theory of [pTeich] [cf. the
discussion of [AbsToplll], §I5]. Indeed, the proof of a fundamental absolute p-adic
anabelian result concerning the canonical curves that arise in the theory of [pTeich]
[cf. [CanLift], Theorem 3.6] depends, in an essential way, on a certain cyclotomic
rigidity result proven in an earlier paper [cf. [AbsAnab|, Lemma 2.5, (ii)]. In this
context, we observe that one important theme that appears both in the present
series of papers and in the theory of [CanLift], §3, is the idea that cyclotomes
should be thought of as the “skeleta of arithmetic holomorphic structures”
— cf. the relation of S' to C* in the complex archimedean theory.

We are now ready to discuss the main result of the present §1.

Corollary 1.12.  (Multiradial Constant Multiple Rigidity) Write (R,C,® :
R — C) — i.e., in the notation of Example 1.8, (v), (vi),

(IT ~ T, (MO (D)) ® Q/Z, G ~ OXH(G), . xp) — (G~ OFH(Q))
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— for the multiradial environment discussed in Example 1.8, (v), (vi), where

we take T** < Tsm. Consider the functorial algorithm that associates to
IT

the following commutative diagram (f,,)(1I)

Mp (I U My - o00(10) = lig, H(Ig ()]s, (- Ae)(ID))

l |

My (M2(I) U My ool (M2(TD) = ling, B (T (M2 (I))[ 7, T, (M2 (TT)))

—en *

— where

a) J ranges over the finite index open subgroups of I1; “| ;7 denotes the fiber
g 9
product “xJ7”;

(b) the right-hand vertical arrow is the isomorphism of modules induced
by the cyclotomic rigidity isomorphism obtained via the functorial
algorithm of Corollary 1.10;

(c) we recall that it follows from the definitions [cf. Example 1.8, (ii), (iii);
[AbsToplll], Definition 3.1, (vi); [IUTchi], Remark 3.1.2] that one has a
natural inclusion M, (1) — lim , H'(J, (I - Ae)(I)), hence a natural
inclusion of My, (II) into the inductive limit of the first line;

(d) we define My, (M®(I1)) and the left-hand vertical arrow to be the sub-
module and bijection induced by the cyclotomic rigidity isomorphism of

(b);
def

(e) we define My, - (1) = My (IT) - oo O(IT); here, o8(IT) is obtained via
the functorial algorithm of Proposition 1.4, applied to 11, and the s
to be understood as being taken with respect to the module structure [i.e.,

which is usually denoted additively!] of the ambient cohomology module;

« o
1

def

() we define Mpyy - oo, (MO(I1) ' M3k, (MO(ID)) - o8, (MO(ID)); here,

Oogenv(M? (I1)) is obtained via the functorial algorithm of Proposition 1.5,
(iii), applied to MO (I1) [cf. Propositions 1.2, (i); 1.5, (i)]; the “” is as
in (e);
(g) the horizontal arrows “—” are the natural inclusions.
Also, let us write MZH (=) € MY, (=) /MY (=), where M2 (=) C MZ,(—) de-
notes the submodule of torsion elements. Then:

(i) There is a functorial group-theoretic algorithm
I = {(, D))

that assigns to the topological group I a collection of pairs (v, D) — where Ay (1I) def

Iy (IT) N A, ¢ is a Ay (I1)-outer automorphism of 11y (I1) [cf. Proposition 1.4], and
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[by abuse of notation] D C HX(H) is a AX(H)—conjugacy class of closed subgroups
— with the property that when 11 = HE? , the resulting collection of pairs coincides

with the collection of “pointed inversiokn automorphisms” of Remark 1.4.1, (ii).
Here, each pair (v, D) will be referred to as a pointed inversion automorphism.
If (v, D) is a pointed inversion automorphism, and ¢ induces an “action up to
torsion” on some subset “(—)” of an abelian group [i.e., an action on the image
of this subset in the quotient of the abelian group by its torsion subgroup/, then we
shall denote by a superscript “.” on “(—)” the subset of (-invariants with respect
to this “action up to torsion”, i.e., the subset of “(—)” that consists precisely of
those elements of “(—)” whose images in the quotient of the abelian group by its
torsion subgroup are fixed by the induced action of v.

(ii) Let (v, D) be a pointed inversion automorphism associated to IL [cf. (i)].
Then restriction to the subgroup D C Iy (II) determines [the horizontal arrows

in/ a commutative diagram

(Mg 0@Y  — M) (Clim, H(JL(-Ae)(ID))

! !

(M)} — M MO()  ((Clig, H(JTL, (MO (1D))))

{M’E‘(M ’ oogenv * *
— where J ranges over the finite index open subgroups of 11 [cf. (a)]; the vertical
arrows are the isomorphisms induced by the cyclotomic rigidity isomorphism of
Corollary 1.10 [cf. (b)]. Here, the inverse images of the submodules of torsion
elements — i.e., [up to various natural isomorphisms] the submodules “Mfy(—)”
— wia the upper and lower horizontal arrows are given, respectively, by OOQ(H)L and

ol (MO(ID))t. In particular, we obtain a functorial algorithm [in the topological

—env

group I1] for constructing splittings

My (1) % {of(I1)" /My (T1) };
Mpyft(MP(ID) % {oof, (M (ID)* /My, (M (I1)) }

*

(o) (1)

— i.e., direct product decompositions inside the quotients of the inductive limits
on the right-hand side of the diagram (f,¢)(II) by “ME,(=)” — of the respective
images of { Mgy - o0}, { M5y - ool (MO (D))} in these quotients.

env

(iii) Consider the assignment that associates to the data
(I ~ I, (MO (1) © Q/Z. G ~ O (G), )

the data consisting of

MO (II) — i.e., the projective systems of mono-theta environ-
ments of Propositions 1.2, (i); 1.5, (i);

 (Txg)(II) — d.e., “subsets”;

(Tue)(II) — i.e., “splittings”;
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the diagram

~

I,M2(I) @ Q/Z = Mg, (M2(I)) = My, (1)

~

(tpxpn)
= MIEM@) S 0*H(G) Hok
— where the first “= 7 is the isomorphism determined by the injection of
Remark 1.5.2; the second “ = 7 is the isomorphism determined by the ver-
tical arrows of (1.¢)(I1); the “=7 is the trivial homomorphism; the final

“3 7 denotes the poly-isomorphism induced by the poly-isomorphism

‘ax” of Example 1.8, (iii) [cf. also the discussion of “I'*M” in Example

1.8, (iv)].
Then this assignment determines a functor R — F which arises from a functo-
rial algorithm; denote the corresponding graph [cf. Example 1.9, (i)] by RT. In
particular, the resulting natural functor Vg : R — RT [cf. Evample 1.9, (i)] is
multiradially defined.

Proof.  Assertion (i) follows immediately from the discussion of Remark 1.4.1 and
the references quoted in this discussion. Assertion (ii) follows immediately from the
structure of the objects under consideration, as described in [EtTh], Proposition
1.5, (ii), (iii) [cf. also the proofs of [EtTh], Theorems 1.6, 1.10]. Finally, the
multiradiality of assertion (iii) follows immediately from the characteristic nature
of the various torsion submodules “M£E  (—)” that appear [cf. the discussion of
Remark 1.10.2; the discussion of Remark 1.12.2 below]|. O

Remark 1.12.1. One verifies immediately that Corollaries 1.10, 1.11, and 1.12
admit “log-shell versions” [cf. Example 1.8, (ix)]. The various interpretations of
these corollaries discussed in the remarks following the corollaries also apply to such
“log-shell versions”.

Remark 1.12.2.

(i) Modulo the multiradiality of the cyclotomic rigidity isomorphism of Corol-
lary 1.10 [cf. Corollary 1.12, (b)], the essential content of the multiradiality of
Corollary 1.12 lies in

the functorial group-theoretic algorithm implicit in the proof of [EtTh],
Theorem 1.10, (i), for constructing §(II) up to a pg-indeterminacy —
i.e., as opposed to only up to a “O;’ -indeterminacy”, as is done in the proof
of [EtTh], Theorem 1.6, (iii) — together with the [elementary] observation
that the submodule of [any isomorph of] O] constituted by the 2I-torsion
is characteristic [cf. the proof of Corollary 1.12, (iii)].

That is to say, it is this “essential content” that implies that the crucial splittings
(Tuo)(I) are compatible with gluing together the various collections of coric
data “(G ~ O*H*(G))” that arise from distinct arithmetic holomorphic structures.

(ii) Here, we recall in passing [cf. also the discussion of Remark 1.4.1] that the
functorial group-theoretic algorithm implicit in the proof of [EtTh], Theorem 1.10,
(i), for constructing (1) up to a py-indeterminacy consists of
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normalizing the étale theta functions under consideration by requiring that
their values at points [cf. also the discussion of Remark 1.12.4 below]| lying
over the 2-torsion point “u_" of [ITUTchI], Example 4.4, (i), be € po

— i.e., of considering étale theta functions “of standard type” [cf. [EtTh], Definition
1.9, (ii); [EtTh], Theorem 1.10, (i); [EtTh], Definition 2.7]. Also, we recall from
the proof of [EtTh], Theorem 1.10, (i), that the decomposition groups C II corre-
sponding to these points lying over the 2-torsion point “x_" are reconstructed by
applying, among other tools, the elliptic cuspidalizations reviewed in Proposition
1.6, (ii) [cf. also the discussion of Corollary 2.4, (ii), (b), below].

(iii) By contrast, if, in the context of the discussion of (i), the normalization
reviewed in (ii) consisted of the requirement that certain values of the étale theta
function be equal, for instance, to

24 4 1e0r C (k)

[where we recall that the residue characteristic of k is assumed to be odd — cf.
[[UTchl], Definition 3.1, (b)], i.e., an element of (k*)”" whose construction depends,
in an essential way, on the ring structure relative to some specific @F!NF-Hodge
theater — i.e., some specific arithmetic holomorphic structure — then the normal-
ization would fail to give rise to a multiradially defined functor, although |cf.
[AbsTopllIl], Corollary 1.10, (h); [IUTchI], Remark 3.1.2] it would nonetheless give
rise to a uniradially defined functor [cf. the discussion of Example 1.9, (iv), (b);
Remark 1.11.5, (ii)].

(iv) From the point of view of the further development of the theory of the
present series of papers, the significance of obtaining “splittings up to a p-indeter-
minacy” may be summarized as follows. Ultimately, we shall be interested, in
[TUTchIII], in applying the theory of log-shells developed in [AbsToplII] [cf. Remark
1.12.1]. From the point of view of log-shells, which may be thought of as being
contained in O*¥(G), an indeterminacy up to some larger subgroup of O, — such
as, for instance, the subgroup generated by 2 = 1 + 1, together with its Aut(G)-
conjugates [cf. the discussion of (iii)] — would imply that

one may only work, in an inconsistent fashion, with [for instance, the image
of the log-shell in| the quotient of O**(G) by such a larger subgroup

— a situation which is unacceptable from the point of view of the further develop-
ment of the theory of the present series of papers.

(v) The discussion in (i), (ii), and (iii) above of the multiradiality of the
crucial splittings (f,,9)(IT) of Corollary 1.12, (ii), yields another important example
[cf. Remark 1.11.3, (iii)] of the phenomenon that sometimes not only the existence
of a single reconstruction algorithm, but also the content of the reconstruction
algorithm is of crucial importance in the development of the theory. Similar ideas,
relative to the point of view of the theory of [EtTh], may also be seen in the
discussion of [EtTh], Remarks 1.10.2, 1.10.4.

(vi) In general, multiradiality amounts to a sort of “surjectivity” [cf. the defi-
nition of a multiradial environment via a “fullness” condition in Example 1.7, (ii);
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the discussion of Example 1.7, (v)] of the radial data onto the coric data. From this
point of view, the content of the multiradiality of the splittings (f,4)(II) of Corol-
lary 1.12, (ii), may be thought of as consisting of a splitting of this “surjection of
radial data onto coric data” into

(a) a “purely radial component” constituted by {8(I)"/Mf, (1)},
{600, (M2 (ID))*/ Mgy (M (IT))} and

(b) a “purely coric component” constituted by Mpk (I1), Mk (MO (11))
[cf. the discussion of Remark 1.11.4].

Remark 1.12.3. From the point of view of the discussion of Remark 1.11.3, it
is useful to note that the subsets My, - oo8(IT), My, - oogenv(Mf?(H)) that appear

in Corollary 1.12 may be thought of as [“roots” of] the images, via the Kummer
map, of a certain generating subset of the monoid of rational functions “(’)CD@ (—)”

defined in [IUTchl], Example 3.2, (v), which is used to construct the underlying
Frobenioid of the split Frobenioid “F©” — cf. also the discussion of Kummer classes
in [EtTh], Proposition 5.2, (iii). Here, the splittings (T o) (IT) of Corollary 1.12, (ii),
correspond to the splitting data of this split Frobenioid F°2. Put another way,

this monoidal data that gives rise to the split Frobenioid

.FG

may be thought of as the result of forgetting the ‘“anabelian struc-
ture” of My - oof(IT), Myyy - ool (MP(IT)), and (f,)(IT)

— cf. the discussion of Remark 1.11.3, (i), (ii); the theory of §3 below, especially,
Proposition 3.4. In particular, the specification of coric data “(G ~ O*¥*(G))” in
the multiradial environment that appears in Corollary 1.12 arises naturally from the
point of view of applying the “coricity of O ” given in [IUTchI], Corollary 3.7, (iii),
as in the discussion of Remark 1.11.3, (ii). Finally, we recall from the discussion of
Remark 1.11.3, (ii), that this specification of coric data “(G ~ O*#(G))” has the
effect of inducing, in particular, an (Aut(G),Im(ZX) (C Ism))-indeterminacy on
‘G~ O**(G)7 [cf. Corollary 1.12, (iii)].

Remark 1.12.4. The fact that the “theta evaluation” functorial algorithm of
Corollary 1.12, (ii), given by restriction to the decomposition groups associated
to the point “u_ " involves only the topological group “II” as input data will be
of crucial importance when we combine the theory developed in the present paper
with the theory of log-shells [cf. [AbsToplll]] in [IUTchIII]. At this point, it is
useful to stop and consider to what extent this sort of “group-theoretic evaluation
algorithm” is an inevitable consequence of various natural conditions. To this end,
let us suppose that we are given some “mysterious evaluation algorithm”

(abstract theta function) +  (theta values)

— i.e., which is not necessarily given by restriction to the decomposition group
associated to a closed point. Then [cf. [EtTh], Remark 1.10.4; the theory of the
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“log-wall”, as discussed in [AbsTopllIlI], §I4] it is natural to require [cf., especially,
the point of view of the discussion of Remark 1.12.3] that this algorithm be

compatible with the operation of forming Kummer classes by extract-
ing N-th roots of the “abstract theta function” and the “theta values”.

In particular, it is natural to require that this algorithm extend to coverings [e.g.,
Galois coverings| on both the input and output data of the algorithm. But then the
natural requirement of functoriality with respect to the Galois groups on either
side leads one [cf. Fig. 1.5 below], in effect, to the conclusion — which we shall
refer to as the principle of Galois evaluation — that

the “mysterious evaluation algorithm” under consideration in fact
arises from a section G — Il (II) of the natural surjection II;. (II) — G.

Moreover, by the “Section Conjecture” of anabelian geometry, one expects that such
[continuous| sections G — 1l (II) necessarily arise from geometric points. [Here,

we pause to observe that this relation to the “Section Conjecture” is interesting in
light of the discussion of [IUTchl], Example 4.5, (i); [[UTchI], Remark 2.5.1.] In this
context, it is useful to recall that from the point of view of the theory of [AbsTopIII]
[cf., e.g., the discussion of [AbsToplIl], §15], the group-theoreticity of the evaluation
algorithm may be thought of as a sort of abstract analogue of the condition, in the
p-adic theory, that an operation involving various Frobenius crystals be compatible
with the Frobenius crystal structures [i.e., connection and Frobenius action] on
the input and output data of the operation.

geometric object geometric object
Il (1) ~ (4 coverings!) that --_> | (+ coverings!) that A~ G
= support(s) the abstract support(s) the
theta function theta values

Fig. 1.5: Theta evaluation and Galois functoriality

Remark 1.12.5.

(i) Recall that the scheme-theoretic Hodge-Arakelov theory reviewed in [HA-
Surl], [HASurll] may be thought of as a sort of scheme-theoretic version of the
well-known classical computation of the Gaussian integral

/ e dr = NZs

— 00

— i.e., by thinking of the square of this integral as an integral over the cartesian
plane R?, which may be computed easily by applying a coordinate transformation
into polar coordinates. That is to say [cf. the left-hand and middle columns of Fig.
1.6 below], the main theorem of scheme-theoretic Hodge-Arakelov theory is a certain
comparison isomorphism [cf. [HASurl], Theorem A] between a “de Rham side” —
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which consists of certain sections of an ample line bundle on the universal extension
of an elliptic curve — and an “étale side” — which consists of arbitrary functions
on the set of [-torsion points of the elliptic curve [where [ is, say, some odd prime
number|. Here, the module on the de Rham side is equipped with a natural Hodge
filtration, while the module on the étale side is equipped with a natural Galois action
by GLo(F;). The ordered, “step-like” structure of the Hodge filtration is reminiscent
of the cartesian structure of the plane R?, i.e., regarded as an ordered collection
[parametrized by one factor of R?] of lines [corresponding to the other factor of R?].
On the other hand, the GLo(F;)-symmetry of the étale side is reminiscent of the
rotational symmetry of the representation of the Gaussian integral on the plane via
polar coordinates. Moreover, the function “e=2"7 jtself appears in the Gaussian
poles that appear in the de Rham side [cf. [HASurl], §1.1], while the “\/7” may
be thought of as corresponding to the [negative| tensor powers of the sheaf “w” of
invariant differentials on the elliptic curve that appear in the subquotients of the
Hodge filtration, which give rise to a Kodaira-Spencer isomorphism [cf. [HASurIl],
Theorems 2.8, 2.10] between w®? and the restriction to the base scheme of the sheaf
of logarithmic differentials on the moduli stack of elliptic curves — i.e., between w
and the “square root” of this sheaf of logarithmic differentials. Finally, we recall
that this relationship between the theory of [HASurl], [HASurll] and the classical
Gaussian integral may be seen more explicitly when this theory is restricted to the
archimedean primes of a number field via the “Hermite model” [cf. [HASurl], §1.1].

classical Gaussian scheme-theoretic inter-universal
integral Hodge-Arakelov theory Teichmiiller theory
cartesian de Rham side, Frobenius-like structures,
coordinates Hodge filtration Frobenius-picture
polar étale side, Galois étale-like structures,
coordinates action on torsion points étale-picture

Fig. 1.6: Analogy with the classical Gaussian integral

(ii) Just as the theory of [HASurl], [HASurll] may be thought of as a scheme-
theoretic version of the classical theory of the Gaussian integral,

the “inter-universal Teichmiiller theory” developed in the present se-
ries of papers may be thought of as a sort of global arithmetic/Galois-
theoretic version of the classical Gaussian integral

— cf. the right-hand column of Fig. 1.6. Indeed, the ordered, ‘“step-like”
nature of the cartesian representation of the Gaussian integral on the plane is remi-
niscent of the structure of the Frobenius-picture discussed in [IUTchl], Corollary
3.8; [IUTchI], Remark 3.8.1 — i.e., in particular, of the notion of a Frobenius-
like mathematical structure that appears in the discussion of [Frdl], Introduction.
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On the other hand, the rotational symmetry of the representation of the Gaussian
integral on the plane via polar coordinates is reminiscent of the étale-picture dis-
cussed in [TUTchI|, Corollary 3.9, and the following remarks — i.e., in particular,
of the notion of an étale-like mathematical structure that appears in the discus-
sion of [FrdI], Introduction. The étale-picture that arises from the multiradially
defined functor of Corollary 1.12 is depicted in Fig. 1.7 below [where we recall the
notation of Proposition 1.4; Example 1.8, (iv)]. From the point of view of the clas-
sical series representation of a theta function — i.e., roughly speaking, the series
“> nez ¢"" - U™ [cf. [EtTh], Proposition 1.4] —

this étale-picture of various copies of the Gaussian function “q™ 7 de-
p y4 q
fined on spokes emanating from a single common core

w0 ("TI)

l

y mono-analytic core »

G~ O**(G)  Ism

T

=117

so0(" 1)
Fig. 1.7: Multiradial étale theta functions

[cf. also the point of view of Remark 1.12.2, (vi)] is highly reminiscent of the polar
coordinate representation of the Gaussian integral on the plane. In this context, it
is also of interest to observe that the coordinate transformation

e ~ U

that appears in the radial portion of the integrand of the Gaussian integral that
arises from the transformation from cartesian to polar coordinates

2. (fe™da)? = 2. [[e ™V dedy = [ [e -2rdr df
= [[de™")do = [ [dudb
is formally reminiscent of the ©-link “TQU — *q 7 [cf. [IUTchI], Remark 3.8.1,

(i)], various versions of which play a central role in the theory of the present series
of papers.

(iii) Just as the equivalence between cartesian and polar representations of the
classical Gaussian integral is used effectively to compute the value of this Gauss-
ian integral, the relationship between the Frobenius- and étale-pictures will play a
central role [cf., especially, the computations of [TUTchIII], §3; [IUTchIV], §1] in
the theory of the present series of papers.
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Section 2: Galois-theoretic Theta Evaluation

In the present §2, we develop the theory of group-theoretic algorithms sur-
rounding the Hodge-Arakelov-theoretic evaluation of the étale theta function
on l-torsion points. At a more technical level, this theory depends on a careful
analysis of the issue of conjugate synchronization [cf. Remark 2.6.1] — i.e.,
of synchronizing conjugates of various copies of objects associated to the absolute
Galois group of the base field that occur at the evaluation points — as well as on
the computation, via the theory of [IUTchI], §2, of various conjugacy indetermi-
nacies [cf. Corollaries 2.4, 2.5] that arise from the consideration of certain closed
subgroups of various topological groups. In fact, these various technical issues
arise, ultimately, as a consequence of the requirement of performing the Hodge-
Arakelov-theoretic evaluation in question with respect to a single basepoint |cf.
the discussions of Remark 1.12.4; [IUTchI], Remark 6.12.6]. This Hodge-Arakelov-
theoretic evaluation will play a central role in the theory developed in the present
series of papers.

In the present §2, we shall work mainly with the local portion at v € yPhad of
the various mathematical objects considered in [IUTchI], §3, §4, §5, §6. In fact,
however, many of the constructions carried out in the present §2 will be wvalid for
strictly local data [as in §1], i.e., that does not necessarily arise from global data
over a number field. Nevertheless, in order to keep the notation simple from the
point of view of discussing the compatibility of the theory of the present §2 with the
theory of [IUTchl], we shall carry out the discussion of the present §2 only for the
localized objects that arise from the theory of [IUTchI], §3, §4, §5, §6, leaving the
routine details of a corresponding purely local theory to the interested reader.

Proposition 2.1. (Review of Certain Tempered Coverings) Let v € yhad,

Write . . .
HY — HZ — H& :H2

—v

| | |

tp tp tp
HYU — HYE — H&)

—v —v

for the diagram of open injections of topological groups arising from the theory
of [EtTh], §2 — where

(a) Hgv, H&p are the tempered fundamental groups determined by the hy-
perbolic [orgi]curves X, X of [IUTchI], Definition 3.1, (e);

(b) Hg? C Ht)? , Hg C Ht)? are the open subgroups corresponding to the

tempered coverings Y — X | Y, = X, determined by the objects “Y'*%”,
“ylos” in the discussion preceding [EtTh], Definition 2.7;

(c) Hg-/p C Hg‘g 1s the open subgroup determined by the tempered covering

= )

gv —;év of [IUTchl], Example 3.2, (ii); Hgf CTI'Y s the open subgroup
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corresponding to the tempered covering Yg — X, determined by the object
“Ylog” in the discussion preceding [EtTh], Lemma 1.2;

(d) the arrows are the natural inclusions, and both squares are cartesian.

Then this diagram may be reconstructed via a functorial group-theoretic algo-
rithm /[cf. [EtTh], Proposition 2.4] from the ftemp-slim! — cf., e.g., [SemiAnbd],
Ezample 3.10] topological group Hf}g .

—v

Proof. The assertions of Proposition 2.1 follow immediately from the results of
[EtTh], [SemiAnbd] that are quoted in the statements of these assertions. ()

Remark 2.1.1. In the notation of Proposition 2.1:

(i) Recall that the special fiber of any model of Y, that arises from a stable
model of X consists of a chain of copies of the proj(;ctive line joined together
at the points ‘07, “c0” [cf. the discussion preceding [EtTh], Proposition 1.1]. The
set of irreducible components of this special fiber may be thought of as a torsor
over the group Z. Moreover, the natural action of Gal(Y,/Y,) = {£1} on Y, fixes
each of the irreducible components of the special fiber of Yy and fits into an ezact
sequence 1 — Gal(Y,/Y,) — Gal(Y,/X,) — Gal(Y,/X,) — 1, where Gal(Y,/X,)
may be identified with the subgroup_l ZCZ. Since the degree [ covering X ) N X .
is totally ramified at the cusps, it thus follows that each of the maps -

FY%FX; Fi}—>Fy; Fy—>ri}; Fx—>Fy; F§—>F§
on dual graphs associated to the special fibers of stable models [where we omit the

various subscript “v’s” in order to simplify the notation| determined by the various
coverings discussed in Proposition 2.1 induces a bijection on vertices.

(ii) Let ¢tx, tx, ty be as in Remark 1.4.1, where we take “X,7 tobe X . Write

ty for the automorphism of Yy induced by L

ry < TI'x
for the unique connected subgraph of I'x which is a tree that is stabilized by tx and
contains every vertex of I'x;

r{« < 1%

for the unique connected subgraph of I'x stabilized by tx that contains precisely one
vertex and no edges. Thus, if one thinks of the vertices of I'x as being labeled by
elements €

{=01%, =1 +1,...,-1,0,1,... 0 = 1,1*}

— where the vertex labeled 0 is fixed by tx — then I'% is obtained from I'x by

eliminating the unique edge joining the vertices with labels £1*; I'S, consists of
the unique vertex 0 and no edges. In particular, by taking appropriate connected
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components of inverse images, one concludes [cf. (i)] that I'% determines finite,
connected subgraphs

% CI% Cly, L CIrhcCry, It

CT® CTs

[[><

[|~:®
[|<:¥
[~

of the dual graphs corresponding to X Yv, g which are stabilized by the respec-

tive “tnversion automorphisms” LX, Ly, Ly Here, each subgraph FZ ) consists of

precisely one vertex and no edges, while the set of vertices of each subgraph F(_)
maps bijectively to the set of vertices of I'%. In fact, [although we shall not use this

fact in the present series of papers] it is not difficult to verify, by considering the
divisibility at the edges [i.e., nodes] of the divisor of poles of the theta function [cf.
[EtTh], Proposition 1.4, (i)], that

each subgraph F(’_) maps isomorphically to T'%.

Proposition 2.2. (Decomposition Groups Associated to Subgraphs) In
the notation of Proposition 2.1, write

Hgo g Hyb g Hg

for the decomposition groups determined, respectively, by the subgraphs I'S and
I'% — i.e., more precisely, the group “HERH ” of [IUTchI], Corollary 2.3, (iii),
where we take “X 7 to be év, ‘H” to be 'S or I'%, “T7 to be {l}, and 537 4o be

Primes. Thus, I,y is well—aeﬁned up to Hg_-conjagacy; once one fizes I,y , then
the subgroup Il,e C Il is well-defined up to IL,p-conjugacy [cf. Remark 2.2.1
below/; 1L,y C Htp NIL, = Htp . Note, moreover, that we may assume that Il,,,

—v

Iy, and ¢ def vy [cf. Remarks 1.4.1, (ii); 2.1.1, (ii)] have been chosen so that
some representative of 1 stabilizes II,e and I,y . Then:
(i) The collection of data (I1ye C Iy C 1Ily,¢), regarded up to I1,-conjugacy,

may be reconstructed via a functorial group-theoretic algorithm from the topo-
logical group 11,.

(ii) The functorial group-theoretic algorithms

I, — 0(L) < of(L) C I_H;Hl( v ()]s, (- Ae)(ILy))

of Proposition 1.4 [i.e., where we take “I1” to be IL, ], together with the condition of
invariance with respect to v [cf. [EtTh], Proposition 1.4, (ii); the proof of [EtTh],
Theorem 1.6, (iii)], determines a specific po- (respectively, p (= My, (I1y))-)
orbit

0'(Il,) <  O(I,)  (respectively, o8°(IL,) C o8(ILy))

within the unique {(1 - Z) X po}- (respectively, each {(I-Z) x p}-) orbit contained
in the set O(IL,) (respectively, »0(Ily)) [cf. Proposition 1.4; Corollary 1.12, (ii)].
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Proof.  Assertion (i) follows immediately from the fact that dual graphs of stable
models may be reconstructed via a functorial group-theoretic algorithm from the
corresponding tempered fundamental group [cf., e.g., [SemiAnbd], Corollary 3.11,
or, alternatively, [AbsTopl|, Theorem 2.14, (i)]. Assertion (ii) follows immediately
from the results of [EtTh] that are quoted in the statements of assertion (ii). O

Remark 2.2.1. In the notation of Proposition 2.2, we recall that since the
subgroup I,y C II, is commensurably terminal [cf. [IUTchI], Corollary 2.3, (iv)],
it follows that even when this subgroup is subject to a Il,-conjugacy indeterminacy,
the indeterminacy induced on any specific 1I,-conjugate of this subgroup I, is
an indeterminacy with respect to inner automorphisms [i.e., of the specific IL,-
conjugate of Il |.

Definition 2.3.

(i) In the notation of Proposition 2.2; [[UTchI|, Definition 3.1, (e); [IUTchI],
Remark 3.1.1: Write A, of Ag? , AF = dof At)? I def Htp , A d_ef Atcg | TIer def

—v

Ht ; denote the respective profinite completions by means of a “A”. Thus, we have

natuml diagrams of outer inclusions of topological groups

A, — AF — A A, — 3:; — ﬁ;or
I, — 1'[2jE — TI5" ﬁ2 — ﬁgi — ﬁ;or

— where the left-hand diagram admits a natural outer inclusion into the right-
hand diagram, in the evident fashion. Here, we recall that A, includes as a normal

open subgroup of ﬁi of index [ [cf. [EtTh], Proposition 2.2, (ii); [EtTh], Remark

2.6.1], that Ai 1ncludes as a normal open subgroup of Acor of index 2 [cf. the
discussion preceding [EtTh], Definition 2.1], and that I and II$°" may be recon-
structed group-theoretically from 11, [cf. [EtTh], Proposition 2.4]. We shall use
these diagrams to regard the various groups appearing in the diagrams as sub-
groups, well-defined up to HCO]r conjugacy, of HCOY. Recall the collection of data
(IIye € Iyp C ILy,¢), well- defined up to 11, -conjugacy, of Proposition 2.2, (i).
Write

def
- v

L, Ny (M) € T4y % Npp(Iy) C IO

[cf. Remark 2.1.1, (ii); [[UTchI|, Corollary 2.3, (iv)] — so we have natural isomor-
phisms

I, /Mye 5 T /My 5 G /10, 5 AT/A, 5 Gal(X /X,) (% Z/1Z)
and equalities Hit. N1, = Iy, Hyi> N1L, = I,y [cf. [IUTchI], Corollary 2.3, (iv)].

(ii) Let II5, IIc be any of the topological groups I, Hgi, I, ﬁg, ﬁi, ﬁg’r of
(1); suppose that IIc C II5 relative to one of the natural outer inclusions discussed
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in (i). Then we recall that the cuspidal inertia groups of 115 may be reconstructed
group-theoretically from the topological group II5 via the algorithms of [AbsTopl],
Lemma 4.5 [cf. also [IUTchI], Remark 1.2.2, (ii)]; [AbsTopl], Proposition 4.10, (vi),
and that the cuspidal inertia groups of IIc may be obtained as the intersections
with IIc of those cuspidal inertia groups of 115 that contain a finite index subgroup
that lies inside IIc [cf. [IUTchI], Corollary 2.5; [IUTchl], Remark 2.5.2], while
the cuspidal inertia groups of II5 may be obtained as the II5-conjugates of the
commensurators [or, alternatively, the normalizers] in II5 of the cuspidal inertia
groups of IIc [cf. [CombGC], Proposition 1.2, (ii)].

(iii) Let IIc be any of the topological groups IL,, Hi_)t, ﬁg, ﬁi of (i); if IIc

is equal to II, or ITF, then set I15 L VR Il is equal to ﬁg or ﬁ;—L, then set

II5 def ﬁvi Thus, IIc C II5. Then [cf. [IUTchI|, Definition 6.1, (iii)] we define

a +-label class of cusps of ITc to be the set of Ilc-conjugacy classes of cuspidal
inertia subgroups of IIc whose commensurators in II5 [cf. the discussion of (ii)]
determine a single II5-conjugacy class of subgroups in II5. [Here, we remark in
passing that since the inclusion IIc C II5 corresponds to a totally ramified covering
of curves, it is not difficult to verify that such a set of IIc-conjugacy classes is, in
fact, of cardinality one.] Write

LabCusp™ (IT¢)

for the set of £-label classes of cusps of IIc. Thus, when Ilc = II,, if we set TD2 def
BtemP(I1 )0, then the set LabCuspi(Hg) may be naturally identified with the set
LabCusp™ (D,) of [ITUTchI], Definition 6.1, (iii). In particular, LabCusp™(IL,) =

LabCuspi(TDE) admits a natural action by F*, as well as a zero element

Tng € LabCuSpi(HE) = LabCusp™ ('D,)

and a £-canonical element

Tnf € LabCuspi(Hg) = LabCuspi(TDE)

— well-defined up to multiplication by 41, which may be constructed solely from
D, [cf. IUTchI], Definition 6.1, (iii)].

(iv) Let t € LabCuSpi(Hy). Then ¢ determines a unique vertex of % [cf.
[CombGC], Proposition 1.5, (i)]. Write I'§ C I'% for the connected subgraph with

no edges whose unique vertez is the vertex determined by ¢. Then just as in the
case of I'S [i.e., the case where ¢ is the zero element] discussed in Proposition

2.2, the sﬂ)graph 'Y determines — via a functorial group-theoretic algorithm — a
decomposition group_
Hyot - Hgb - Hg

— which is well-defined up to I,y -conjugacy. Finally, we shall write n,

vet

Ny (Hyet) [cf. (1)]; thus, we have a natural isomorphism Hyi,t/ﬂg.t = Gal(X /X,).
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(v ) Let IIc be either of the topological groups Hi Hi of (i); if IIc = H:;, then

set H; = Hcor if Ilc = H , then set II5 | LI5°". Then one verifies immediately

that the images [via the natural outer 1nJect10n II, — Ilc] in LabCusp™ (IIc) of
the various structures on LabCusp™ (IL,) reviewed in (iii) determine [in the notation
and terminology of [TUTchI], Definition 6.1, (i)] a natural Ff-torsor structure on

LabCusp™(IIc). Moreover, the natural action of II5/IIc on IIc preserves this
Fli—torsor structure, hence determines a natural outer isomorphism

- /Tlc & &
[cf. [IUTchl], Definition 6.1, (i)].

Remark 2.3.1. In the situation of (iii), suppose that the inclusion IIc C II5 is
strict. Then one verifies immediately that if I C II5 is a cuspidal inertia group of
II5, then the cuspidal inertia group I (IIc C Ilc of IIc satisfies

I(Hc =1

— where the superscript [ is relative to the group operation on I, written multi-
plicatively. In particular, [even though II, (respectively, II,) fails to be normal in

II5°" (vespectively, I15°7)] it follows — since H:; (respectively, Hgi) is normal in 113"
(respectively, II7°") — that the cuspidal inertia groups of 11, (respectively, 11, ) are

permuted by the conjugation action of I (respectively, ﬁg’r ).

The theta evaluation algorithm discussed in the following Corollaries 2.4, 2.5,
2.8, and 2.9 is central to the theory of the present §2, and, indeed, of the present
series of papers.

Corollary 2.4. (Ffi-Symmetric Two-torsion Translates of Cusps) In
the notation of Definition 2.3: Let t € LabCusp™ (ILy); O € {ot,»}. Write

Ao €A, NILo, AL defAiﬂH

Dd_efnﬂgﬂn B = AT
— s0 we have
Mo : M) = [Ayn: Ayl =2, [Gh: o] = [Aj: Aunl =1
M5 ) = (A Al =2
[cf. Definition 2.3, (i), (iv)].

(i) (Inclusions and Conjugates) Let I; C II, be a cuspidal inertia group
that belongs to the class determined by t such that Iy € A,n. Consider the [ﬁ:;—
conjugacy stable] sets of subgroups of ﬁgi

{Igl}wleﬁﬂi = {[?l}wlegzgt
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. + _ +
HZQD 'VQEﬁi - HZE ’Yzezi’ {(HED)WB }'YSGﬁit o {(HED>73 }wgeﬁi

— where the superscript “y’s” denotes conjugation f[i.e., (=) - (=) -y~ 17] by
~. Then for ~v,~" € Ai, the following three conditions are equivalent:

()7 €M (0) I CM)y; () T C ().

(i) (Two-torsion Translates of Cusps) In the situation of (i), if we write

5 vy € 3:;, then any inclusion

5 v Y176
=17 CIp =1,

as in (i) completely determines the following data:

(a) a decomposition group D? L Nis (1) C Hii corresponding to the

inertia group If ;

(b) a decomposition group Dg_ C Hg‘, well-defined up to (Hgi,)é— [or,
equivalently, (AZE,)‘S-] conjugacy, corresponding to the torsion point “u_"
of Remark 1.4.1, (i), (i), via the algorithms of [SemiAnbd], Theorem
6.8, (iii) [concerning the group-theoreticity of the decomposition groups
of torsion points/, and [SemiAnbd], Corollary 3.11 [concerning the dual
semi-graphs of the special fibers of stable models/, applied to Ag C Hg;

(¢) a decomposition group Dg,u— C Hii}’ well-defined up to (H;tm)‘s-

[or, equivalently, (Afm)‘;—/ conjugacy — i.e., the image of an evaluation
section [cf. [IUTchl], Example 4.4, (i)] — corresponding to the “u_-
translate of the cusp that gives rise to I ”, via the algorithm of [SemiAnbd],

Theorem 6.8, (iii) [concerning the group-theoreticity of the decomposition
groups of translates by torsion points of the cusps|.

Moreover, the construction of the above data is compatible with conjugation by
arbitrary 6 € AT as well as with the natural inclusion et € Iy of Definition

v

2.3, (), as one varies 0 € {ot,»}.

(iii) (F;*-Symmetry) Suppose that O = et. Then the construction of the
data of (1), (a), (c), is compatible with conjugation by arbitrary 6 € ﬁfjor [cf.
Remark 2.3.1]. Here, we recall from Definition 2.3, (v), that we have natural outer
isomorphisms A" /AT 3 TIcor/IIE 3 F) =

Proof. First, we consider assertion (i). The implications (a) = (b) and (b) =
(c) are immediate from the definitions [cf. also Remark 2.3.1]. Thus, it suffices to

verify that (c) = (a), i.e., that the condition I?”/ C (II%,)" implies that v/ € A%;
we may assume without loss of generality that v = 1. Then by [IUTchl], Corollary
2.5 [cf. also [TUTchI], Remark 2.5.2], the inclusion I} C I C IIF implies that
7' € AF. Now, by applying the equivalence of [IUTchI], éorollar;f 2.3, (vi) [cf.
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also [CombGC], Proposition 1.2, (ii)], to the various finite index open subgroups
of Ar, it follows that 7/ € Afm — where we use the notation “A” to denote the

closure in Ei [cf. Proposition 2.2; Definition 2.3, (iv); [IUTchI|, Corollary 2.3,
(ii)] — hence that v/ € AT = E:TLD NA; [cf. [IUTchI], Corollary 2.3, (v)]. This

completes the proof of assertion (i). Assertions (ii) and (iii) follow immediately
from the definitions and the references quoted in the statements of these assertions.

O

Remark 2.4.1. Note that by applying [I[UTchl], Proposition 2.4, (i) [cf. the
proof of [IUTchl], Corollary 2.5; [[UTchl], Remark 2.5.2], one may replace “I;” in
Corollary 2.4 by its mazimal pro-l' subgroup for any I’ € ‘Brimes \ {p, }. The use of
such maximal pro-I’ subgroups sometimes results in a simplification of arguments
involving intersections with other closed subgroups, since every closed subgroup of
such a maximal pro-l’ subgroup is either open or trivial.

Corollary 2.5. (Group-theoretic Theta Evaluation) In the notation of
Corollary 2.4:

(i) (Restriction of Subquotients to Subgraphs) Write

(- Ae) ()

the inclusion 11,5 < II, induces an isomorphism (I - Ag)(IT,z) = (I- AZg)(HE).
Write
HQ - Gﬂ(Hﬂ)v Hy‘ - GQ(HQ‘)

for the quotients determined by the natural surjection 11, — G,. Then there ewists
a functorial group-theoretic algorithm for constructing these quotients from
the topological group 11, [cf., e.g., [AbsAnab], Lemma 1.8.8, as well as Proposition
2.2, (i); Corollary 2.4 of the present paper].

(i) (Restriction of Etale Theta Functions to Subgraphs and Evalua-
tion Points) Let

5 vy 5 AR T
I =1, gHg; QH2> —H2>

be an inclusion as in Corollary 2.4, (i) [where we take O] o » /. Then restriction
of the VY -invariant sets 0'(11)), 8 (I1}) of Proposition 2.2, (ii), to the subgroup
HZ‘ C Hg(HZ) (C II}) yields pay-, p-orbits of elements

0'(Ig) C of'(y) C lim H(I[5 (1 Ae)(IT);))
J

— where J C ﬁy ranges over the open subgroups of ﬁg — which, upon further
restriction to the decomposition groups Df’uf of Corollary 2.4, (i), (c), yield
por-, p-orbits of elements

Oly) © <L) €l H(GIL;) e, (- Ae)(ITy))
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foreacht e LabCuspi(HZ) = LabCusp™ (Il,) — where Jg € G,(IT) ) ranges over
the open subgroups ofGE(HZ$); the “= 7 is induced by conjugation by ~y. Moreover,

the sets Qt(Hz‘), mgt(ﬂz‘)_ depend only on the label |t| € [F;| determined by t [cf.
Definition 2.3, (iii); [IUTchI], Example 4.4, (i); [IUTchI], Definition 6.1, (iii)].

e o1t . ) < ot (1 ity .y 2 gt
Thus, we shall write 0 (HQ;) =40 (Hy;), ot (HQ;) = ol (H25)'

(iii) (Functoriril Group-theoretic Evaluation Algorithm) If one starts
with an arbitrary A;_f-conjugate HZ; of g, and one considers, as t ranges
over the elements of LabCusp™ (II7) :;LabCuspi(Hg) [where the “ = 7 is induced
by conjugation by v/, the resulting_ugl—, p-orbits Q't‘ (HZ;), Ooghfl (HZ$> arising from
an arbitrary ﬁi-conjugate I? of I; that is contained in 118 /C]; (11)], then one

obtains a group-theoretic algorithm for constructing the collections of po;-, -
orbits

{0100 werms Lo (5 ujerm

which is functorial in the topological group 11, and, moreover, compatible with
the independent conjugacy actions of Agi on the sets {1, }71€ﬁf ={I" }’Y1€2:2t

and {H;E}weﬁf = {HZi N [cf. the sets of Corollary 2.4, (i); Remark 2.2.1].

Proof.  Assertions (i), (ii), and (iii) follow immediately from the definitions and
the references quoted in the statements of these assertions. Here, in assertion
(i), we observe that the fact that the inclusion 1L,z < TI, induces an isomorphism

(I-Ae)(IT,z) = (I-Ae)(I1,) follows immediately by considering the cuspidal inertia
groups involved. ()

Remark 2.5.1.

(i) Recall from the discussion of [[UTchl], Example 4.4, (i), that relative to the
“standard” cyclotomic rigidity isomorphism (¥*>G21) of Proposition 1.3, (ii), and
the resulting Kummer map

KQX — Hl(Gy(Hy$)7 (l ) AG)(HQS))

i.e., we take “0” in Corollary 2.5, (ii), to be the identity — without loss of generality,
in light of Remark 2.2.1], it follows immediately from the definition of the connected
subgraph “I'%” in Remark 2.1.1, (ii) [cf. also [IUTchI], Corollary 2.3, (vi)], that, for

j € |Fy], the set Qj (I, ) consists of precisely the pg-orbit of the “theta value”

52
1,
[cf. [IUTchI], Example 3.2, (iv); [EtTh], Proposition 1.4, (ii)] — where the “j” in

the exponent denotes the element € {0,1,...,1*} determined by the given element
j e ‘Fl’
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(ii) Note that [the reciprocals of the I-th powers of] the theta values discussed
in (i) are somewhat unusual among the various values

O(c)

— where ¢ € K, — attained by the theta series

W 1 L1y
©=0() d:equé Z (_1)71.%%{( +3)° fren+

nez

discussed in [EtTh], Proposition 1.4 [cf. the notation of loc. c¢it.] in that they
satisfy the following crucial property [cf. the discussion of Remark 1.12.2]:

the ratio ©(c)/O(¢') is a root of unity, for any ¢’ € K, [corresponding
to a point of YE] that occurs as the result of applying an automorphism of
IT, to [the point of Y, that corresponds to] ¢ such that ¢'/c is a unit.

That is to say, the reciprocals of the I-th powers of the theta values discussed in (i)

i/2 .
correspond to the values ©(+v/—1-¢x ), where j € {0,1,...,1*}, i.e., the values

. . . 3/2 .
at points separated by periods [i.e., the “g5 "] from the point “£+/—1”. These
values may be computed easily from the “functional equations” given in [EtTh],
Proposition 1.4, (ii).

(iii) Note that, in the context of the Ffi-symmetry discussed in Corollary
2.4, (iii),

the various po-multiple indeterminacies that occur, for various j € [F],
in the pg-orbit ¢/ (Il ) are independent.

That is to say, these indeterminacies are not “synchronized” so as to arise from a
single indeterminacy that is independent of j. Indeed, each of these po-multiple
indeterminacies arises as a consequence of the action of (Af.t / Ayit)(sa where we

recall from Corollary 2.4 that [Ai : Ays] = 2l, on the decomposition groups

vet

“Dg u C Hg"’ of Corollary 2.4, (ii), (c), hence is induced by the ﬁf-outer nature

~

of the action of ﬁzor/ﬁgi — Fl”i that appears in Corollary 2.4, (iii) — cf. the
discussion of Remarks 2.5.2, 2.6.2 below.

Remark 2.5.2.
(i) If one thinks of the

“set {I)*} {I;”}ME&_L regarded up to ﬁf—conjugacy”

ey —

(respectively, “set {HZi }vzeﬁi = {HZi s, regarded up to Ai—conjugacy”)

[cf. Corollary 2.5, (iii)] as a sort of quotient by A%, then one may think of the
various inclusion morphisms I, < HZi as a sort of morphism between quotients

(B3~ U en ) /B = (B~ (I3 ) /B
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which induces a morphism between quotients

(3% ~ {Dg;_}megg /Af > (Bf ~ {H;ﬁ.}wezj;) JAZ

— cf. Corollary 2.4, (ii); the discussion of [IUTchlI], Remark 4.5.1, (i), (iii). Since all
of the inclusions involved occur within a single “ambient container” — namely,
ﬁff, regarded up to ﬁf-conjugacy — the evaluation algorithm discussed in Corollary
2.5, (iii), may be thought of as a sort of “nested” wersion of the principle of
“Galois evaluation” discussed in Remark 1.12.4. Here, we note that unlike the
situation discussed in Remark 1.12.4, in which the subgroup Il (IT) C II is normal,

the subgroups Il II,5 C ﬁyi are far from being normall

(ii) In the notation of [IUTchI|, Definition 3.1, (d) [cf. also the notation of
[[UTchI], Definition 6.1, (v)], write

+ def .
IoF < Iy

Y

+ def
ACE LA

— so A®* may be naturally identified, up to inner automorphism, with E;t Then
note that unlike the tempered fundamental groups A, AE, Ayp, A p or the local
Galois groups 11, /Ay, TIE /AL Ty /Ay, Mg /A — all of which depend, in a
quite essential way, on v — the topological group A®* = AZ}—L is independent of

v and, moreover, may be recovered directly from the global portion “ID®*” of
a D-0°Lbridge [cf. [IUTchI], Definition 6.4, (ii); [AbsAnab], Lemma 1.1.4, (i)].
On the other hand, A®+ = Agi also serves as an “ambient container” for the

ﬁi—conjugates of both I; and A,5. That is to say,

AOF (= 3:;) serves as a sort of “common bridge” between local data
[such as A, ;] and global data such as the labels

t € LabCusp™ (II®%) (3 LabCuspi(Hz) = LabCuspi(HE))

[where we write LabCusp™ (I1®%) &' LabCusp™ (B(I1®+)°) — cf. [TUTchl],
Definition 6.1, (vi)], in the form of conjugacy classes of I;.

(iii) On the other hand, if, in the discussion of (ii), one passes — as in the
theory of [IUTchI], §6 — between distinct v via this “global bridge” A®*, then
one must take into account the fact that, unlike the labels ¢ [i.e., conjugacy classes
of I], the groups II,z do not admit globalizations or extensions to multiple v’s.
This is precisely the reason for

the independence of the ﬁi_f (=2 A®%)- Jor, equivalently, ﬁ,f_f -] conjugacy
indeterminacies that act on the conjugates of It and 11,5

[cf. the “quotient interpretation” of (i) above; the statement of Corollary 2.5, (iii)].
Here, we observe that since [in the notation of [IUTchI], Definition 3.1] neither of

the natural surjections ﬁﬂf — Gy, [1®* - Gk admits a section that simultaneously
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~

normalizes the subgroups I, as t ranges over the elements of LabCusp™ (me+) =
LabCusp™ (II7) & LabCuspi(HE) [cf., e.g., [AbsSect], Theorem 1.3, (ii); [pGC],
Theorem CJ, it follows that any G- (respectively, Gk-) conjugacy indeterminacy
necessarily results in a ﬁf ~ A®*_conjugacy indeterminacy acting on the various
I, ie.,

G -conjugacy indeterminacy = Agi—conjugacy indeterminacy,

G i -conjugacy indeterminacy => A®*-conjugacy indeterminacy.

Since, moreover, the natural surjection ﬁzor —» Eg’r / Eit does not admit a splitting,

it follows that the ﬁi-outer action of Ezor / ﬁ,f_)t 5 F)E of Corollary 2.4, (i),
induces

independent 33[ =~ A®%_conjugacy indeterminacies on the subgroups I,
for distinct .

In a similar vein, since G, does not determine a direct summand of G g — cf. [NSW],
Corollary 12.1.3; the phenomenon of the non-splitting of “prime decomposition
trees” discussed in [IUTchl], Remark 4.3.1, (ii) — it follows that any G x-conjugacy
indeterminacy [which, as just discussed, gives rise to A®*-conjugacy indeterminacy]
induces independent G,-conjugacy indeterminacies on the various G g-conjugates
of G, [hence also, as just discussed, independent ﬁf-conjugacy indeterminacies] —
ie.,

G i -conjugacy indeterminacy = independent G, -conjugacy indeterminacies

— cf. the discussion of [IUTchI], Remark 4.5.1, (iii).

(iv) One way to visualize the independent conjugacy indeterminacies of the
discussion of (iii) above is via the illustration given in Fig. 2.1 below.

Fig. 2.1: Independent conjugacy indeterminacies

That is to say, one thinks of the upper and lower lines of Fig. 2.1 as being equipped
with independent actions by groups of horizontal translations [i.e., each of which

is isomorphic to ZJ; one thinks of each of the “o’s” in the upper line as representing
a AOF =~ Ayi—conjugate of I; and of each of the “e — ’s” in the lower line as

representing a A®+ =2 ﬁgi—conjugate of I, ;. Thus, since the translation actions on

the upper and lower lines are not synchronized with one another [cf. the discussion
of (iii)],

there is no way to separate — i.e., in a fashion that is compatible with
the indeterminacy arising from both translation actions — the inclusion

[Pk

of a “0” into a “e — @” as the left-hand “e” from the inclusion of the

[Pk

same “o” into some “e — o” as the right-hand “e”.
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Corollary 2.6. (Splittings Defined on Subgraphs) In the notation of Corol-
lary 2.5, (ii):

(i) (“Mzy,” Defined on Subgraphs) The y-conjugate of the quotient U, —
G, (I, ) of Corollary 2.5, (i), determines subsets

(tmy 17U, (- A0)(T5)) 2 ) M) © liy B! (IL |5 (0 20)(T5)),

Mrpy - 0° (T ) © My - o8 (L) < 1_H>1 HY(ID; |5 (1 Ae)(IL);))

— where Jg C Gy(IL,), JC ﬁ range over the open subgroups of G (Il ), 1/_\[2,

respectively; My, - 0" (— )defMTXM( ) - 0°(=), Mpy - o' (— )defM{M( ) - sl ()
— which are compatible, relative to the first restriction operation discussed
in Corollary 2.5, (ii), with the corresponding subsets “Mp (=)”, “Mz, -60°(—)",
“Mpsg - 000" (=) of Proposition 1.4 and Corollary 1.12 [cf. Corollary 1.12, (a), (c),
(e); Corollary 1.12, (i); Remark 1.11.5, (i), (ii)]. Also, [cf. Corollary 1.12] let us

write et
My (I3 ) = My (11 ) /My, (1T )

— where MTM(H ) C M{M(H g ) denotes the submodule of torsion elements.

(ii) (Splittings at Zero-labeled Evaluation Points) In the situation of
Corollary 2.5, (ii), suppose that t is taken to be the zero element. Then the
set Qt(Hz;) (respectively, Oogt(ﬂz‘)) is equal to the por- (respectively, p-) orbit of
the iden_tity element [i.e., the zero element of cohomology module in question, if
one denotes the module structure additively/. In particular, if one considers the
quotient of the diagram of the first display of (i) by M{fM(HZ‘), then restriction

to the decomposition groups D?,u, of Corollary 2.4, (ii), (c), determines splittings
MEP(ITI) x (o (1) /M2, ()

of My oo (IL)) /M{TLM(I_I7 ) which are compatible, relative to the first restric-

tion opemtzon dzscussed in Corollary 2.5, (ii), with the splittings of Corollary
1.12, (ii).

Proof.  Assertions (i) and (ii) follow immediately from the definitions and the
references quoted in the statements of these assertions. ()

Remark 2.6.1.

(i) One of the most central properties, from the point of view of the theory
of the present series of papers, of the evaluation algorithm of Corollary 2.5, (iii),
consists of the observation that this algorithm is performed

relative to a single basepoint — i.e., from a more geometric point of view,
relative to the “fundamental group” Hz‘ corresponding to the connected

subgraph T C I'y [cf. Remark 2.1.1, (ii)].
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In particular, despite the fact that we are ultimately interested in [not a single, but
rather| a plurality of theta values, associated to the various |t| € |F|, these theta
values

Q'“(HV..

) HYGL(I), (- Ae)(IT) )

for various |t| € |F;| are all computed relative to the single copy [i.e., which
is independent of |t|!] of the Galois group G, (IT);) and the single cyclotome
(1- A@)(HZ;) [i.e., which is independent of |t|!] arising from HZ‘ — i.e., arising
from the “single basepoint” under consideration. We shall refer to this phenom-
enon by the term conjugate synchronization. This conjugate synchronization
is necessary in order to perform Kummer theory [cf. the discussion of Galois
evaluation in Remark 1.12.4], as we shall do in §3.

(ii) Put another way, the significance of conjugate synchronization in the con-
text of Kummer theory — especially, in the context of the theory of Gaussian
Frobenioids, to be developed in §3 below — may be understood as arising from
the requirement that the collection of theta values, for |t| € F}*, be treated as

a single unified entity, whose Kummer theory may be described by
considering the action of a single Galois group in the context of the
simultaneous extraction of N-th roots of all theta values, relative to a
single cyclotome [i.e., copy of the module of N-th roots of unity] that
acts simultaneously on the N-th roots of all of the theta values, and in a
fashion that is compatible with the Kummer theory of the “base field”
[i.e., arising from the quotient IT); — G, (IL; )].

This point of view may only be realized by means of a ‘“single basepoint” of
a suitable category of coverings of a geometric object that consists of a single
connected component [cf. the discussion of Galois evaluation in Remark 1.12.4;
the discussion of [EtTh], Remark 1.10.4]. Also, we recall [cf. the discussion of
Galois evaluation in Remark 1.12.4] that this “Kummer-theoretic representation”
of the [“Frobenioid-theoretic”] monoid generated by the [“Frobenioid-theoretic”]
theta function satisfies the crucial property of being compatible [unlike the various
ring structures involved!] with the “log-wall” [cf. the theory of [AbsToplIII]].
This crucial property will play a fundamental role in the theory to be developed in
[TUTchIIT].

Remark 2.6.2.

(i) In the context of the discussion of conjugate synchronization in Remark
2.6.1, it is useful to recall the theory of D-©*F°'-Hodge theaters
+ ell
tq 7D-0" _ (1, o2 D Tﬂ o)
[cf. [IUTchI], Definition 6.4, (iii)] developed in [IUTchI], §6. That is to say, from
the point of view of the theory of D-©%°!-Hodge theaters, it is natural to think

(a) of the topological group 11, that appears in Corollaries 2.4, 2.5, and 2.6
as the tempered fundamental group of "D, v
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(b) of the topological group ﬁgi that appears in Corollaries 2.4, 2.5, and 2.6 as
the commensurator of the closure of 11, [i.e., relative to the interpretation
of (a)] inside the profinite fundamental group of "D®* relative to the
composite poly-morphism

t @i 1 + eell

Con )7 ip P pes

.|.
Dy v v,
determined by the portions of Td)gi, T¢§e“ labeled by 0 € T, v € V [cf.
the discussions of [IUTchl|, Examples 6.2, (i); 6.3, (i)], and

(c) of the ﬁf-outer action of ﬁff’r/ﬁf = F)'* that appears in Corollary

2.4, (iii), as corresponding to the le'i—symmetry of [IUTchI], Proposition
6.8, (i).

Relative to the interpretation of (a), (b), and (c¢), one has the following fundamental
observation concerning the discussion of Remark 2.6.1:

the single basepoint that underlies the conjugate synchronization dis-
cussed in Remark 2.6.1 is compatible with the single basepoint that
underlies the label synchronization discussed in [IUTchI], Remark 6.12.4.

That is to say, both of these basepoints may be thought of as arising from a single
basepoint that gives rise to the various topological groups II,, ITF, etc. that appear
in Corollaries 2.4, 2.5, and 2.6. In particular,

the conjugate synchronization discussed in Remark 2.6.1 is compat-
ible with the F;**-symmetry of [[UTchI], Proposition 6.8, (i) [cf. also
Remark 3.8.3 below].

Indeed, this compatibility is essentially the content of Corollary 2.4, (iii) [cf. (c)
above].

(ii) Note that the compatibility of basepoints discussed in (i) contrasts sharply
with the incompatibility of the conjugate synchronization basepoint of Remark 2.6.1
with the F}* -symmetry of [[UTchI], Proposition 4.9, (i), in the case of D-ONF-Hodge
theaters. At a more concrete level, this difference between Ffi— and F;*-symmetries
may be understood as a consequence of the fact that whereas the ]Fl”i—symmetry
is defined relative to a single copy of a local geometric object at v — i.e., “ﬁ;—L”
cf. (a), (b), (c) above] — the F;*-symmetry involves permuting multiple copies
of local geometric objects in such a way that one may only identify these multiple

copies with one another at the expense of allowing the phenomenon of “label
crushing” [cf. the discussions of [ITUTchI], Remark 4.9.2, (i), (ii); 6.12.6, (i), (ii),

(iii)].

(iii) Another important property of the Ffi-symmetry — which is not satisfied
by the Ff—symmetry! — is that the Ffi—symmetry allows comparison with the
label zero [cf. the discussion of [IUTchI|, Remark 6.12.5], hence, in particular,
comparison with the copies of “OEX 7 [ef. the discussion of Remark 1.12.2] that
occur in the splittings of Corollary 1.12, (ii), that give rise to the crucial constant

multiple rigidity of the étale theta function. This important property is precisely
the content of Corollary 2.6.
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Remark 2.6.3.

(i) The discussion of independent conjugacy indeterminacies in Remark 2.5.2
and of “single basepoints” that are compatible with the Fﬁi-symmetry of [IUTchI],
66, in Remarks 2.6.1, 2.6.2 imply rather severe restrictions concerning the sub-
graph ‘T; C I'y” of Remark 2.1.1, (ii). That is to say, suppose that one attempts
to develop the theory of the present §2 for another subgraph I'' of the graph I'y.
Recall from the discussion of Remark 2.1.1, (i), that the graph I'y- may be thought
of as a “copy of the real line R”, in which the integers Z C R are taken to be the
vertices, and the line segments joining the integers are taken to be the edges. Then
the discussion of “single basepoints” [cf. Remark 2.6.1] implies, first of all, that

(a) this subgraph IV must be connected.

Since, moreover, one wishes to consider the crucial splittings of Corollary 2.6, (ii)
[cf. Remark 2.6.2, (iii)], it follows that

(b) this subgraph I'" must contain the vertez of I'y labeled “07.

The conditions (a) and (b) already impose substantial restrictions on I and hence
on the collection of values of the étale theta function that may arise by restricting
to the p_-translates of the cusps that lie in I [cf. Remark 2.5.1, (ii)] — i.e., on

the collection of
2

J
g:
=v

obtained by allowing j € Z to range [relative to the identification of the vertices of

I'y with the integral E)Oints of the real line] over the “vertices” of I [cf. Remark
2.5.1, (i)].

(ii) By abuse of notation, let us write “j € I'"” for “vertices” j € 7Z that lie
in I". Also, for simplicity, let us assume that the subgraph I is finite [cf. (iii)
below]. Then ultimately, in the theory of [IUTchIV], when we consider various
height inequalities, we shall be concerned with the issue of maximizing the
quantity

def _ . .
I =t ) min {57}

’ - ZEij/ =
JEF, =

— where we write |I”| for the cardinality of the image in F;* of the nonzero elements
of T"; we regard the “min” over an empty set as being equal to zero; we think of
the various j € F* as corresponding to the subsets of Z determined by the fibers
of the natural projection Z — |F;| (2 F;*). Here, we observe that

1Pl

(c) the set of “j’s” that occur in the “min” ranging over “j” [i.e., not over

“i”1] that appears in the definition of ||T'|| is always equal to a fiber
of the restriction to the set of vertices of I of the natural projection
7 — |Fy|.

In fact, this observation (c) is, in essence, a consequence of the phenomenon dis-
cussed in Remark 2.5.2 of independent conjugacy indeterminacies [cf., espe-
cially, Remark 2.5.2, (iv)] — i.e., roughly speaking, that
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one cannot restrict the étale theta function to “one JE I'"” without also
restricting the étale theta function to the various “other j € I'"” that lie

in the same fiber over |F|.

Next, let us make the [easily verified — cf. (a), (b)!] observation that if one thinks
of [|[T|] as a function of |T”|, then as |T”| ranges over the positive integers, it holds
that

(d) the function of |I| constituted by ||I”|| — which may be thought of as a
sort of average — is a monotone increasing [but not strictly increasing]]
function of |I”| valued in the positive rational numbers which attains its
maximum when |IV| = [* and is constant for [IV| > [*.

Now it follows formally from (d) that, as [[”| ranges over the positive integers, the
quantity ||IV|| attains its mazimum when |I’| = [* — hence, in particular, when
I is taken to be F; Thus, from the point of view of the issue of maximizing this
quantity ||T”]|, there is “no loss of generality” in assuming that T = F; [cf. also
the discussion of (iv) below].

(iii) Although in the discussion of (ii) above we assumed that I is finite, this
assumption does not in fact result in any loss of generality. Indeed, one verifies
immediately that ||IV|| is defined, finite, and satisfies the evident analogue of (d)
even for infinite I'. Thus, the case of infinite I may be excluded without loss of
generality.

(iv) Ultimately, in §4 of the present paper, we shall be concerned with the
issue of globalizing, via the construction of various global realified Frobenioids, the
monoids determined by the theta values at v € V°* that appear in the present §2.
This globalization will be achieved, in effect, by imposing the condition that the
product formula be satisfied. On the other hand, the indeterminacies discussed
in (ii) above [cf., especially, (ii), (c)] that arise when a fiber of I'” over |F;| contains
more than one element are easily seen to be fundamentally incompatible with the
product formula. In particular, from the point of view of the issue of maximiz-
ing the quantity ||I”||, in fact the only choice for T' that is compatible with the
“globalization via the product formula” to be performed in §4 is F;

(v) One may summarize the discussion of (i), (ii), (iii), and (iv) as follows:

2
the collection of values Gt v of the étale theta function determined by the
=v

subgraph I‘; is of a highly distinguished nature

— and, indeed, is essentially determined [cf. the discussion at the end of (ii);
the discussion of (iv)] by the requirement of maximizing the quantity “||[I||” in
a fashion compatible with the global product formula, together with various
qualitative considerations that arise from Corollaries 2.4, 2.5, 2.6; the discussion of
Remarks 2.5.1, 2.5.2, 2.6.1, 2.6.2.

Definition 2.7. In the notation of Definition 2.3: Let

M = { .. = M$ —-M§ - ..}
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be a projective system of mono-theta environments as in Proposition 1.5, such that

(i) Write
Ty

for the inverse limit of the induced projective system of topological groups {... —
Mo = Mo, — ... } [cf. the notation discussed at the beginning of Definition
1.1]. Thus, [in the notation of Proposition 1.5] we have a natural homomorphism
of topological groups

HM9 — Iy (M?)

whose kernel may be identified with the exterior cyclotome I11,,(M?), and whose
image is the subgroup of IIx (M9) = II, determined by Hg}j .
(ii) Write
e, CIlye, < Hue

for the respective inverse images of I,z C I,y C II, = Iy (M®) in My ;
ML(ME), (1 Ae)(MS), e (M),  Gu(MS)

for the subquotients of Ilyze  determined by the subquotient I1,,(M?) of IIje and
* P *

*

the subquotients (I - Ag)(Ilx (M?)) [cf. Proposition 1.4], I, and G, (I1x (M?))

[cf. Corollary 2.5, (i)] of I, = IIx(M?). Thus, we obtain a cyclotomic rigidity

isomorphism
(I Ae)(MT) = IL(MS)

— i.e., by restricting the cyclotomic rigidity isomorphism (I-Ag)(M$) = I1,,(M?)
of Proposition 1.5, (iii), to IIye .
*b

Corollary 2.8. (Mono-theta-theoretic Theta Evaluation) In the notation
of Definition 2.7: Suppose that we are in the situation of Proposition 2.2, (ii);
Corollary 2.5, (ii); to simplify notation, we assume that HK(M?) = II,, and we

use the notation for objects constructed from “II,” to denote the corresponding
objects constructed from Ix (M?). Also, let us write

(M)

for the projective system of mono-theta environments obtained wvia transport of
structure from the isomorphism IL, = 13 determined by conjugation by .

(i) (Restriction of Etale Theta Functions to Subgraphs and Evalu-
ation Points) In the situation of Proposition 2.2, (ii); Corollary 2.5, (ii), let us
apply the cyclotomic rigidity isomorphisms

~

(- Ae)((M)7) = IL((MZ)7): (1-Ae)((M2D)7) = ILu((M2)7)
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[ef. Definition 2.7, (i), applied to (MP)7] to replace “I-Ag)(—)" by “U,(—)".
Then the ¢ -invariant subsets 0*(I1)) C 0(117), 0 (I1y) € «0(I13) [cf. Proposition
2.2, (ii); Corollary 2.5, (ii)] determine 1Y -invariant subsets

g ((MD)) S8 (MD)); b ((MD)) C o8 ((MD)7)
[ef. Proposition 1.5, (iii), applied to (M®)7]; restriction of these subsets Q;nv((Mg)V),
0" (MO)) to Hgg((M?‘)V) yields por-, p-orbits of elements

—env

—env

0 (M) o (ME)Y) i B (I (M3)7)] 5 T ((M5)7))
J

— where J C ﬁg ranges over the open subgroups of ﬁy — which, upon further
restriction to the decomposition groups Df’u_ of Corollary 2.4, (i), (c), yield
Waor-, p-orbits of elements

g (M) C b (M3)) C liny H(Go((MZ5)") e, Tu((M3)7))
G

for each t € LabCusp™ (1) = La,bCuspi(HE) — where Jg C GE((M?;)V) ranges

over the open subgroups of Gy((MQ )Y); the “ = 7 is induced by conjugation by .

Moreover, the sets anv((M?;)“y), OOGt ((MS;)7) depend only on the label |t| € ||

—=env

determined by t [cf. Corollary 2.5, (ii)]. Thus, we shall write QLiv((M?‘)V) def

0" (M), ool (MS)7) = o (M),

(ii) (Functorlal Group-theoretic Evaluation Algorithm) If one starts
with an arbitrary Ai-conjugate Hv,((M@ )Y) of Hv,(I\\/JI6 ), and one consid-

ers, as t ranges over the elements of LabCusp™ (I13) = LabCuspi( v) [where the
“5 7 s induced by conjugation by v/, the resulting po-, p-orbits 9'” ((M?‘)V),

GLtr'w(( 5 )7) arising from an arbitrary ﬁjj_t-conjugate I? of I that is con-

tained in HQ;((M*@‘)V) [cf. (i)], then one obtains an algorithm for constructing
the collections of por-, p-orbits

t t e
(0" (ME) ) e {08 (ME))Herepm
which is functorial in the projective system of mono-theta environments M® and,
moreover, compatible with the independent conjugacy actions of A;—L on the

sels (17"} i = U7}, ae and (s (M%)} _ge = (s (M%)™)) 5
[cf. the sets of Corollary 2.4, (i); Remark 2.2.1].

(iii) (Splittings at Zero-labeled Evaluation Points) In the situation of
(i), suppose that t is taken to be the zero element. Then, by applying the cy-
clotomic rigidity isomorphisms of (i) to replace “(I- Ag)(—)” by “Uu(—=)" — an
operation that, when applied to “Mii(—)” [where “7?” € {x,m, xu}], we shall
denote by replacing the notation “HZ‘ 7 by “(M?‘)V” — in Corollary 2.6, (ii), the
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second restriction operation discussed in (i) determines splittings [cf. Corollary
2.6, (ii)]

Mpf (M3)7) % {oofls, (ME)7) /My (MZ))}
Of M’I?M N OOQL

:env((M*@‘)'V)/M{r‘M((M?‘)V) which are compatible, relative to the first
restriction operation discussed in (i), with the splittings of Corollary 1.12, (ii) [i.e.,
relative to any isomorphism MO = MO (IL,) — cf. Proposition 1.2, (i); Proposition
1.5, (i); Remarks 2.8.1, 2.8.2 below].

Proof.  Assertions (i), (ii), and (iii) follow immediately from the definitions and
the references quoted in the statements of these assertions. ()

Remark 2.8.1. One may regard Corollaries 2.5, 2.6 as a special case of Corollary
2.8, i.e., the case where the projective system of mono-theta environments M? arises
from the topological group II, by applying the functorial group-theoretic algorithm
of Proposition 1.2, (i) [cf. also Proposition 1.5, (i)].

Remark 2.8.2. The significance of the mono-theta-theoretic version of Corol-
laries 2.5, 2.6 constituted by Corollary 2.8 lies in the fact that this mono-theta-
theoretic version allows one to relate the group-theoretic theta evaluation theory
of the present §2 to the theory of Frobenioid-theoretic theta functions associ-
ated to tempered Frobenioids [cf. [EtTh], §5], i.e., by considering the case where
M arises from a tempered Frobenioid [cf. Proposition 1.2, (ii)]. For instance, by
considering the case where M arises from a tempered Frobenioid, one may treat
the Frobenioid-theoretic cyclotomes [i.e., cyclotomes that arise from the units of the
Frobenioid] of Proposition 1.3, (i), in the context of the theory of the present §2.

Remark 2.8.3.

(i) The use of the archimedean line segment I'y C I'x [cf. Remark 2.1.1,
(ii)] to single out the elements € {—1*, —I* +1,...,—1,0,1,...,1* — 1,1¥} — i.e.,
the elements with absolute value < [* — within the nonarchimedean congruence
classes modulo | constituted by an element € F;* is reminiscent of the computation
of the set of global sections of an arithmetic line bundle on a number field [cf., e.g.,
[Szp], pp. 13-14], as well as of the arithmetic inherent in the graph theory associated
to the loop I'x [cf. [SemiAnbd], Remark 1.5.1].

(ii) The sort of argument discussed in (i) involving the connected, “archime-
dean” line segment T'% C I'x [cf. Remark 2.6.1 for more on the importance of
this connectedness] depends, in an essential way, on the discreteness of Z (2 7).
Put another way, this sort of argument may be thought of as an application of the
discrete rigidity that forms one of the central themes of [EtTh|. Note, moreover,
that in the context of Corollary 2.8, this application of discrete rigidity is closely
related to the application of cyclotomic rigidity. This is perhaps not so surpris-
ing, since discrete rigidity — in the form of the discreteness of squares of elements
of Z, i.e., in effect, the quotient of Z by the action of {£1} — may be thought of
as a sort of dual property to the cyclotomic rigidity of “(I- Ag)(—)". Indeed, one
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may think of this duality as being embodied in the very structure and values of the
étale theta function [cf. [EtTh], Proposition 1.4, (ii), (iii); [EtTh], Proposition 1.5,

(i)

In a similar vein, one may also consider the theory of group-theoretic theta
evaluation developed in the present §2 in the context of the natural isomorphism
“ps(Gr) = p(x)" of [AbsToplll], Corollary 1.10, (c) [cf. also Proposition 1.3,
(ii); Corollary 1.11, (b)].

Corollary 2.9. (Theta Evaluation via Base-field-theoretic Cyclotomes)
Suppose that we are in the situation of Proposition 2.2, (ii); Corollary 2.5, (ii).
Also, let us write

p5(Gu(IL)) = (1-Ae)(ILy);  pz(Gu(I)) = (I-Ae)(IT);)

for the cyclotomic rigidity isomorphisms determined by the natural isomor-
phism “p~(Gr) = ps(lx)” of [AbsToplIl], Corollary 1.10, (c) [cf. also Propo-
sition 1.3, (ii); Corollary 1.11, (b)] and its restriction to 11, [cf. Corollary 2.5,

(i)]-

(i) (Restriction of Etale Theta Functions to Subgraphs and Eval-
uation Points) In the situation of Proposition 2.2, (ii); Corollary 2.5, (ii), let
us apply the above cyclotomic rigidity isomorphisms to replace “(I-Ag)(—)” by
“ws(Gy(=))". Then the Y -invariant subsets 0°(I17) C O(I17), o8 (11}) C wcf(117)
[cf. Proposition 2.2, (ii); Corollary 2.5, (ii)] determine (¥ -invariant subsets

0, () < 0 (L) b () < o8, (L)

Zbs\ U =  Zhs\ U v =  O=bs
— where one may think of the “bs” as an abbreviation of the term “base-field-
theoretic”; restriction of these subsets 6, (1)), 0, (IIJ) to HZ‘ yields puo;-,
p-orbits of elements

QES(HZ‘) - ooQ;S(HZ;) - h_IAI,l Hl(HZ; j,N’Z\(Gg(HZ;)))
J

— where J C ﬁy ranges over the open subgroups of ﬁg — which, upon further
restriction to the decomposition groups Df’u_ of Corollary 2.4, (i), (c), yield
or-, p-orbits of elements

0, (I0g) S 8 () < {1]_H>1 HY Gy (I )] 16 u5(Go (1))
G

for eacht € LabCuspi(Hz) = LabCusp™ (IL,) — where Jo € Gy(IL) ) ranges over
the open subgroups OfGy(HZ;); the “= 7 is induced by conjugation by ~y. Moreover,

the sets ths(HZ;), OOQES(HZi) depend only on the label |t| € |F;| determined by t

[ef. Corollary 2.5, (ii)]. Thus, we shall write Q]Ltl (HZ‘) Lof His(HZ‘), OOQLZ! (HZ‘) def

t =
Oogbs (HZP) ’
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(ii) (Functorial Group-theoretic Evaluation Algorithm) If one starts
with an arbitrary Af-conjugate IT". of Il , and one considers, as t ranges
v (4 4 v

over the elements of LabCusp™ (II7) :;LabCuspi(HE) [where the “ = 7 is induced
by conjugation by v/, the resulting po;-, p-orbits Q]';S‘(HZ‘), OOQES!(HZ‘) arising from
an arbitrary Ai-conjugate I? of I; that is contained in HZS [cf. (i)], then one
obtains an algorithm for constructing the collections of poy-, p-orbits

{QE(HZs)}\tIGIFzH {ooﬁgsl(HZ;)hﬂew

which is functorial in the topological group 11, and, moreover, compatible with
the independent conjugacy actions of A:; on the sets {1, }71€ﬁf = {I" }wleﬁf
and {HZQ‘»}weﬁf = {HZi e [cf. the sets of Corollary 2.4, (i); Remark 2.2.1].

(iii) (Splittings at Zero-labeled Evaluation Points) In the situation of
(i), suppose that t is taken to be the zero element. Then, by applying the cyclo-
tomic rigidity isomorphisms reviewed above to replace (I-:Ae)(—)” by “uz(Gy(—))”
— an operation that, when applied to “M3 (—)” [where “7?” € {x,u, xu}/], we
shall denote by means of a subscript “bs” — in Corollary 2.6, (ii), the second
restriction operation discussed in (i) determines splittings [cf. Corollary 2.6, (ii)]

Myl (HZ; Jbs X {OOQILOS (HZ;)/MFM (HZ; Jbs}

of Mfyy - OOQ;S(HZ‘)/M{T‘M(HZ‘)IDS which are compatible, relative to the first re-
striction operation discussed in (i) and the cyclotomic rigidity isomorphisms re-
viewed above, with the splittings of Corollary 1.12, (ii).

Proof.  Assertions (i), (ii), and (iii) follow immediately from the definitions and
the references quoted in the statements of these assertions. ()

Remark 2.9.1.

(i) Let us recall that [the cyclotomic rigidity isomorphisms involving] the cyclo-
tomes “II,,(—)” that appear in Corollary 2.8 admit a multiradial formulation [cf.
Corollary 1.10]. By contrast, at least relative to the point of view of Remark 1.11.3,
(iv), [the cyclotomic rigidity isomorphisms involving] the cyclotomes “p~(Gy(—))”
that appear in Corollary 2.9 only admit a uniradial formulation — i.e., unless one
is willing to sacrifice the crucial cyclotomic rigidity under consideration as in the
formulation of Corollary 1.11.

(ii) On the other hand, the use of [the cyclotomic rigidity isomorphisms involv-
ing] the cyclotomes “p-(Gy(—))” has the crucial advantage that it allows one to
apply the [not multiradially (1), but rather| uniradially defined natural surjection

HY(Go(—), u5(Go(-)) — Z

of Remark 1.11.5, (i), (ii).
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(iii) One immediate consequence of the discussion of (i) is the observation
that, at least relative to the point of view of Remark 1.11.3, (iv), the algorithms of
Corollary 2.9, (ii), (iii), only give rise to a uniradially defined functor. On the
other hand, one important consequence of the theory to be developed in [TUTchIII]
is the result that,

by applying the theory of log-shells [cf. [AbsToplIII]], one may modify
these algorithms in such a way as to obtain algorithms that [yield functors
which| are manifestly multiradially defined

— albeit at the cost of allowing for certain [relatively mild!] indeterminacies.
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Section 3: Tempered Gaussian Frobenioids

In the present §3, we relate the theory of group-theoretic algorithms surround-
ing the Hodge-Arakelov-theoretic evaluation of the étale theta function on
[-torsion points developed in §1, §2 to the local portion at bad primes [i.e., at
v € VP of the various Frobenioids considered in [TUTchI], §3, §4, §5, §6. In par-
ticular, we shall discuss how the various multiradial formulations developed in §1
and the theory of conjugate synchronization developed in §2 may be applied
in the context of the “tempered Gaussian Frobenioids” that arise from the
Hodge-Arakelov-theoretic evaluation of the étale theta function on [-torsion points.

In the present §3, we shall continue to use the notation of §2. In particular,

our discussion concerns the local portion at v € ybad of the various mathematical
objects considered in [IUTchI], §3, §4, §5, §6.

Proposition 3.1. (Mono-theta-theoretic Theta Monoids) Let
M = {.. - M§ —-M§ — ...}

be a projective system of mono-theta environments [cf. Proposition 1.5,
Corollary 2.8] such that H§<M?) = 11,. In the following, to simplify the notation,

we shall denote a “HX(M?)” i parenthesis by means of the abbreviated notation
{M*G ” o

(i) (Split Theta Monoids) By applying the constructions of Proposition
1.5, (iii); Corollary 2.8, (i) [cf. also Corollary 1.12, (d)], one obtains a functorial
algorithm

MO o (M, (09), 8, (MO), b, (D),

? —env ( —env

My ool (M) C lim H'(TTy (M), T,(M2)) |
(g

env = L

— where J ranges over the finite index open subgroups of HK(MS)), and v ranges

over the inversion automorphisms of Proposition 2.2, (i) — for constructing var-
1ous subsets of the direct limit of cohomology modules in the above display; this
collection of subsets is equipped with a natural conjugation action by HK(M?).

In particular, one obtains a functorial algorithm for constructing the data

* env —env

oy (MO) € { Wi, (M9) = M, (M9) 00 (MO }

T (M9) L e, (M9) = ME,(MD) -t (MO )

consisting of the submonoids {¥: (MO)},, { V.., (MO)}, [of the direct limit of

cohomology modules in the first display of the present (i)] generated, respectively,
by the subsets “Miy - Q;nv(M?)”, “Masg = 000’ (MO)”, as well as a functorial

—=env
algorithm for constructing the splittings up to torsion determined by the subsets

“Mops(MO) 7, “ggnv(l\\/ﬂ?)”, “OOQLHV(M*@)” [cf. Corollary 2.8, (iii)]. We shall refer
to each W, (MP), UL (M?) as a theta monoid.

env env
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(ii) (Constant Monoids) By applying the cyclotomic rigidity isomor-
phisms of Corollaries 2.8, (i); 2.9, and considering the inverse image of 7 C 7
via the surjection of Remark 1.11.5, (i), applied to G,(M?) (= G,(Ilx(M®))) [cf.

the notation of Corollary 2.5, (i)], one obtains a functorial algorithm

def

M? = \chns(M?> - MTM(M?) - h—m} H1<HY(M*®)‘J7HIJ«(MS})>
¥ Y

[where J is as in (i)] for constructing a “monoid of constants” — i.e., which is
naturally isomorphic to (9% [cf.  Example 1.8, (ii)] — equipped with a natural

conjugation action by HK_(M?). We shall refer to Wens(MO) as a constant

*

monoid.

Proof.  Assertions (i) and (ii) follow immediately from the definitions and the
references quoted in the statements of these assertions. ()

Before proceeding, we pause to review the theory of tempered Frobenioids dis-
cussed in [IUTchI|, Example 3.2.

Example 3.2. Theta Monoids Constructed from Tempered Frobenioids.
In the situation of [IUTchl], Example 3.2:

(i) Recall the tempered Frobenioid F —of [IUTchl], Example 3.2, (i), (ii), (v)
[cf. also [IUTchI], Remark 3.2.3, (i), (ii)]. Then, in the notation of loc. cit., the
choice of a Frobenioid-theoretic theta function
X (s
QQ €0 ('JI‘g )

— i.e., among the po (T; )-multiples of the Autp, (Y )-conjugates of © — deter-

mines a monoid (95?(—) on DS. Now suppose, for simplicity, that the topological

group II, arises from a basepoint, i.e., more concretely, from a “universal covering
pro-object” A2 of D, li.e., a pro-object determined by a cofinal projective system
of Galois objects of D,]. Then by evaluating Oge (—) on [the “universal covering

pro-object” of DY determined by] A9, we obtain submonoids [in the usual sense]

def
Vroia = Ogg(A?o) = Ogg(A?o)'Qng
C «¥reiq « Ot A?O)Q?EWA?O C O*(The)

— where the superscript “Q>¢” denotes the set of elements for which some [positive
integer| power is equal to a [positive integer] power of QU| ae . In a similar vein,
by considering [cf. [IUTchI], Remark 3.2.3, (i)] the various conjugates O of O ,

for @ € Autp, (YU), we also obtain submonoids ¥re , C «cVre o C (’)X(TZ@ ).
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Moreover, one has a natural surjection IL, — Autp, (Yv), as well as a natural

conjugation action of 11, on the collections of submonoids

def def
\I/]:G) = {\I/]:Gva} 3 oo\:[/]—"@ = {00\11}"97a}
v v a€ll, A z a€ll,

— l.e., where, by abuse of notation, we think of the subscripted “a’s” as denoting
the image of “a” via the surjection II, — Autp, (Y ). Also, we recall from loc. cit.
that Q?ZOI Ae determines characteristic splittings, up to torsion, of the monoids
Ve o [cf. the “r9” of [IUTchI], Example 3.2, (v)], sV re o which are compatible

with the action of IL,. Finally, we recall that the collection of data

HQ N \Ij]-_f? = {\Ij]-_f?,a} ) oo\Ij]—'E) = {oo‘ll}'f),a}

— l.e., consisting of two collections of submonoids of the group of units [namely,
O*(T7e )] associated to the birationalization of a certain characteristic pro-object
of £ . eoauipped with the conjugation action by an automorphism group of a certain
characteristic pro-object of D, — as well as the characteristic splittings, up to
torsion, just discussed, may be reconstructed category-theoretically from F )

[cf. [TUTchI], Example 3.2, (vi), (€)], up to an indeterminacy arising from the inner
automorphisms of II,.

(ii) In a similar, but somewhat simpler, vein, the Frobenioid structure on
the subcategory C, C L ie., the “base-field-theoretic hull” of the tempered

Frobenioid £ [cf. [TUTchI], Example 3.2, (iii)] — determines, via the general
theory of Frobenioids [cf. [Frdl], Proposition 2.2], a monoid O¢ (=) on D,. Then

by evaluating OF (—) on A, we obtain a monoid [in the usual sense]

def
Ve, = OCDE(A?O)
which is equipped with a natural action by II,. Finally, we recall that the collection
of data
H2 m \I/cv
Ag
ated to the birationalization of a certain characteristic pro-object of F . equipped

— i.e., consisting of a submonoid of the group of units [namely, O* (T, )] associ-

with the conjugation action by an automorphism group of a certain characteristic
pro-object of D, — may be reconstructed category-theoretically from J ) [cf.

[IUTchI], Example 3.2, (iii); [[UTchI], Example 3.2, (vi), (d); [Frdl], Theorem 3.4,
(iv); [FrdlI], Theorem 1.2, (i); [FrdII], Example 1.3, (i)], up to an indeterminacy
arising from the inner automorphisms of II,.

Proposition 3.3.  (Frobenioid-theoretic Theta Monoids) Suppose, in the
situation of Proposition 3.1, that M arises [cf. Proposition 1.2, (ii)] from a tem-
pered Frobenioid T;ﬂ — 1.e.,

MO = MO(E)

*
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— that appears in a ©-Hodge theater THT® = {TE, Yuwev, "8hoa) [ef. [TUTCRI],

mod

Definition 3.6] — cf., for instance, the Frobenioid “.;_v ”of [IUTchl], Example 3.2,

(i). Observe that by applying the category-theoretic constructions of Example 3.2,
(i), (ii), to Tév’ one obtains data

My(M?) ~ Wize = {‘I’ng,a} oVt ro = {OO\IJU-"}?,a}

IIxy(M2) ~ Ui,

a€lly (MO)’ a€lly (M©)

as well as splittings, up to torsion, of each of the monoids Vire o, cc¥tFo q-

(i) (Split Theta Monoids) By forming Kummer classes relative to the
Frobenioid structure of Tév — 1.e., in essence, by considering the Galois coho-

mology classes that arise when one extracts N-th roots of unity for N € N> [cf.
[FrdIl], Definition 2.1, (ii); [I[UTchI], Remark 3.2.3, (ii); the discussion of [EtTh],
§5] — and applying the description given in Proposition 1.3, (i), of the exterior
cyclotome of a mono-theta environment that arises from a tempered Frobenioid,
one obtains, for a suitable bijection of [ - Z-torsors between /Gal(zv/gv)—orbz’ts

of] “4”7 as in Proposition 2.2, (i), and images of “a” wvia the natural surjection
I, — [-Z, collections of isomorphisms of monoids

~

\Iffj—.eva — Pt

~

env(M*@); oo\:[jf}"f,a — OO\I/énv(MS))

— each of which is well-defined up to composition with an inner automorphism
[cf. the discussion of Example 3.2, (i)] and compatible with both the respective
conjugation actions by HX(M?) and the splittings up to torsion on the monoids
under consideration. We shall denote these collections of isomorphisms by means
of the notation

~ ~

\I/T]-'S) — \I]env(M?)Q oo\IjT]-'f}’) — oo\I/env(M*@)

[cf. the notation of Proposition 3.1, (i); Example 3.2, (i)].

(i) (Constant Monoids) By forming Kummer classes relative to the Frobe-
nioid structure of Tév — i.e., in essence, by considering the Galois cohomology

classes that arise when one extracts N-th roots of unity for N € N>y [cf. [Frdll],
Definition 2.1, (ii); [IUTchl], Remark 3.2.3, (ii); [Frdll], Theorem 2.4] — and ap-
plying the description given in Proposition 1.3, (i), of the exterior cyclotome of
a mono-theta environment that arises from a tempered Frobenioid, one obtains an
isomorphism of monoids

~

Ui, 5 U (MP)

— which is well-defined up to composition with an inner automorphism [cf. the
discussion of Example 3.2, (ii)] and compatible with the respective conjugation
actions by 11y (M?).

Proof.  Assertions (i) and (ii) follow immediately from the definitions and the
references quoted in the statements of these assertions. ()
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Proposition 3.4. (Group-theoretic Theta Monoids) Let Tév be a tem-

pered Frobenioid as in Proposition 3.3. Consider the full poly-isomorphism

MP(TL,) S MI(TE)

— where M?(HE) 1s the projective system of mono-theta environments arising from
the algorithm of Proposition 1.2, (i) [cf. also Proposition 1.5, (i)] — of projective
systems of mono-theta environments.

(i) (Multiradiality of Split Theta Monoids) FEach isomorphism of projec-
tive systems of mono-theta environments M (IL,) — M?(Tiv) induces compati-

ble [in the evident sense/ collections of isomorphisms

~

M, = My (M2(IL)) = OxMP(E)) = IxMP(E))
oo\I’env (M? (Hy)) :> oo\penv (M? (Tig)) :> oo\I’TJf-‘é9 ;
U U U
Yeny (M? (Hg)) = Veny (M*@ (Tig)) — \I’Tff
and
GQ = GQ(MS? (Hg)) = GQ(MQ (Tiz)) = GQ(M*G(Tég))

\I]eHV(M?(Hy))X - \IleHV(M?(Tév))X = (\IJT]-‘S))X
— where the upper horizontal isomorphisms in each diagram are isomorphisms
of topological groups; the lower/middle horizontal isomorphisms in each diagram
are isomorphisms of [ind-topological] monoids; the lower/middle horizontal iso-
morphisms in the first diagram are compatible with the respective splittings up to
torsion; the left-hand square in each diagram arises from the functoriality of the
algorithms involved, relative to isomorphisms of projective systems of mono-theta
environments; the right-hand square in each diagram arises from the inverses of
the isomorphisms of the second display of Proposition 3.3, (i); the superscript “x”
denotes the submonoid of units; the notation “Gy(—)” is as in Proposition 3.1, (ii).
Finally, iof we write (\ijf?)xu for the ind-topological monoid obtained by forming

the quotient of (\IfoU@)X Ey its torsion subgroup, then the functorial algorithms

HE — qjenv(M?(Hy)); Hg — oo\Ijenv(M?(Hg))

— where we think of Wy, (M2 (IL,)), OO\IJQHV(I\\/JI?(HE)) as being equipped with their
natural I1, -actions and splittings up to torsion [cf. Proposition 3.1, (i)] — obtained
by composing the algorithms of Propositions 1.2, (i); 3.1, (i), are compatible,
relative to the above displayed diagrams, with arbitrary automorphisms of [the
underlying pair, consisting of an ind-topological monoid equipped with the action of
a topological group, determined by the pair

GuMP(E)) ~  (Tize)™®
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which arise as Ism-multiples of automorphisms induced by automorphisms of [the
underlying pair, consisting of an ind-topological monoid equipped with the action
of a topological group, determined by/ the pair GE(I\\/JIS?(Tiv)) ~ (Wige)™ [cf.

Ezample 1.8, (iv); Remark 1.8.1; Remark 1.11.1, (i), (b)] — in the sense that the
natural functor “Ugr” of Corollary 1.12, (iii), is multiradially defined.

(ii) (Uniradiality of Constant Monoids) Fach isomorphism of projective
systems of mono-theta environments M? (IL,) = M?(Tév) induces compatible

collections of isomorphisms

M, = Mx(MP(IL,)) = HxMP(E)) = TxM2(E))
Wens (M*@ (Hg)) = Wens (M*@ (Tiy)) - \IJTCE
and
Gy, = GMP(IL) = GMP(E)) = GM(E))
\IJCHS(M? (Hg))x = \chnS(M?(Tév))x = (\I’TCE)X

— where the upper horizontal isomorphisms in each diagram are isomorphisms of
topological groups; the lower horizontal isomorphisms in each diagram are isomor-
phisms of [ind-topological] monoids; the second diagram may be naturally iden-
tified with the second displayed commutative diagram of (i); the left-hand square
in each diagram arises from the functoriality of the algorithms involved, relative
to isomorphisms of projective systems of mono-theta environments; the right-hand
square in each diagram arises from the inverse of the displayed isomorphism of
Proposition 3.3, (ii); the superscript “x” denotes the submonoid of units; the no-
tation “Gy(—)” is as in Proposition 3.1, (i). Finally, if we write (¥ic )** for the
ind-topological monoid obtained by forming the quotient of (W+c,)> by its torsion
subgroup, then the functorial algorithm -

Iy = Wens (M2 (I1,))

— where we think of \IJCHS(M*@(HE)) as being equipped with its natural I1,-action
[cf. Proposition 3.1, (ii)] — obtained by composing the algorithms of Proposition
1.2, (i); 3.1, (i), depends on the cyclotomic rigidity isomorphism of Corollary
1.11, (b) [ef. Remark 1.11.5, (ii); the use of the surjection of Remark 1.11.5, (i),
in the algorithm of Proposition 3.1, (ii)], hence fails to be compatible, relative
to the above displayed diagrams, with automorphisms of [the underlying pair,
consisting of an ind-topological monoid equipped with the action of a topological
group, determined by/ the pair

GuMO(E)) A (Tie,)™™

which arise from automorphisms of [the underlying pair, consisting of an ind-
topological monoid equipped with the action of a topological group, determined by/
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the pair GE(MS)(Tév)) ~ (Wic,)™ [ef. Remarks 1.11.1, (i), (b); 1.8.1] — in

the sense that this a_lgom'thm, as given, only admits a uniradial formulation [cf.
Remarks 1.11.3, (wv); 1.11.5, (ii)].

Proof.  Assertions (i) and (ii) follow immediately from the definitions and the
references quoted in the statements of these assertions. ()

Remark 3.4.1.

(i) Note that the pairs

‘GuMP(E)) ~ (Tipe)™ and “GuMP(E)) ~ (ie,) ™

that appear in Proposition 3.4, (i), (ii), correspond to the pair “G ~ O*H*(G)”
that appears in the discussion of Remark 1.11.3, (ii) — i.e., the data that arises by
replacing the “O*” that appears in the ©-link of [IUTchI], Corollary 3.7, (iii), by
“O*m” That is to say, from the point of view of the present series of papers, the
significance of Proposition 3.4 lies in the point of view that

the multiradiality (respectively, uniradiality) asserted in Proposition
3.4, (i) (respectively, (ii)), may be thought of as a statement of the com-
patibility (respectively, incompatibility) of the algorithm in question
with the “O*H-version” of the ©-link of [IUTchl], Corollary 3.7, (iii).

(ii) One important consequence of the theory to be developed in [TUTchIII] [cf.
Remark 2.9.1, (iii)] is the result that,

by applying the theory of log-shells [cf. [AbsToplIII|], one may construct
certain algorithms related to the algorithm of Proposition 3.4, (ii), that
[yield functors which] are manifestly multiradially defined

— albeit at the cost of allowing for certain [relatively mild!] indeterminacies.

The following two corollaries will play a fundamental role in the present series
of papers.

Corollary 3.5. (Mono-theta-theoretic Gaussian Monoids) Let M® be as
in Proposition 3.1 [cf. also Corollary 2.8, in the case where v = 1; Remark 3.5.1
below]. Fort € LabCusp™ (ILx (M2)), we shall denote copies labeled by t of various
objects functorially constructed from MO by means of a subscript 4”. Also, we
shall write

ly(M?) C IHx(M?2) < Ho(M?)

Ax(MP) C© Ax(MP) € Ac(M?)

for the inclusions — which may be functorially constructed from 1lx (M®) — cor-
responding to the inclusions 11, C H;_f - H;‘)r, A, C Ai - Ag’r of Definition 2.3,

(1)-



94 SHINICHI MOCHIZUKI

(i) (Labels, F,'*-Symmetries, and Conjugate Synchronization) If we
think of the cuspidal inertia groups C Ilx (M®) corresponding to t as subgroups
of cuspidal inertia groups of Ilx (M®) [cf. Remark 2.5.1], then the Ax (M?)-outer
action of B)'F = Ac(M®)/Ax(M®) on I1x (M?) [cf. Corollary 2.4, (iii); Remark
1.1.1, (), or, alternatively, when applicable, Proposition 1.3, (i), (iii)] induces
isomorphisms between the pairs

GQ(M?$ )t~ Wens (M?)t

— consisting of a labeled ind-topological monoid equipped with the action of a
labeled topological group [cf. Proposition 3.1, (ii)] — for distinct t € LabCusp™
(TIx (MQ)). We shall refer to these isomorphisms as [F;'*-]symmetrizing iso-

morphisms [cf. Remark 3.5.2 below]. We shall denote by means of a subscript
“4t| € |Fy|” the result of identifying copies labeled by t, —t via a suitable sym-
metrizing isomorphism. We shall denote by means of a subscript “(|Fy|)” (respec-
tively, “(F}")”) the diagonal embedding, determined by suitable symmetrizing
isomorphisms, inside the direct product of copies labeled by |t| € |F;| (respectively,
t| € F). In particular, by restricting the monoid Wens(M®) of Proposition 5.1,
(i), via the restriction operations [i.e., to “HMe‘ ”and “waf ] described in detail
in Corollary 2.8, (i), (ii), one obtains a collection of compatible morphisms

(M9 ) Mu®S) - GuM) g,

% %

~

\IJCHS(ME«?) — WCHS(M?)HEI)

— where the notation “~" denotes the natural actions; the bottom horizontal arrow
1s an isomorphism of monoids — which are compatible with the various sym-
metrizing isomorphisms and well-defined up to composition with an inner
automorphism of HK(M?) [i.e., up to composition with the conjugation action

by HK(M?) on the pair 11,5 (M?;)

auto%orphism indeterminacy — which, a priori, depends on the index |t| — is, in
fact, independent of |t| € |F;|.

A Wens(MO)/. Put another way, this inner

(ii) (Gaussian Monoids) We shall refer to an element of the set
0" (MO, ) L 0l %) € T Wens(MO)yy

—env *p —env
t|eF} t|eF}

[cf. the notation of Corollary 2.8, (i), (ii)] — which is of cardinality (21)!" —
as a value-profile. Then by applying [the various objects constructed from] the
symmetrizing isomorphisms of (i), together with the functorial algorithm [for
restricting elements ofgénv(l\\/ﬂf?), ooggnv(l\\/ﬂ?)] of Corollary 2.8, (i), (ii), one obtains
a functorial algorithm for constructing two collections of submonoids

MO —
def def
o (M9) L 0e(M®) 05 (M0) n) - €7 C T o)
|t|eF

def def
Vg (M9) L weM®) X w, (10) oy €30 C ] Va2 }
|t|eF}*

57

3
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— where the superscript “x” denotes the submonoid of units; £ ranges over the
value-profiles; “%>0” denotes the submonoid generated by the N-th roots [for
N € N>/ of & [which are uniquely determined, up to multiplication by an ele-
ment of the N -torsion subgroup of U (M?)W;&) !] that arise by restricting elements

cns

of wot’ (M®); each Ue(M?) is equipped with a natural action by GQ(M*@;)m*)-

env

We shall refer to each We(MP) or o Ve(M?) as a Gaussian monoid. Here, the
submonoid Woy.¢ (M) C W (MP) generated by WX, (M*@)Wﬁ and €2 js indepen-
dent of the value-profile £&. Finally, the restriction operations described in detail
in Corollary 2.8, (i), (ii), determine a collection of compatible [in the evident

sense/ morphisms [cf. Remark 3.6.1 below]
(IxM9) < ) Me®&) e {GuME)byers

5% %
O oo Ue(M?)
U U
Ui (M?) = Te(M?)

143 2

— where the “--"1in the first line denotes the compatibility of the action [de-
noted by the second “~” in the second line] of GE(I\\/JI?;)M on the factor labeled
“¢|” of the direct product containing -Ve(MP) [cf. the definition of W¥e(M®)]
with the inclusions G,(M?) — Hv;(M?‘) determined by the various choices of
the “Dgu_ 7 [ef. Corollary 2.8, (i), (ii)] that gave rise to the value-profile &; the
first “~.” in the second line denotes the natural action; the lower/middle horizontal
arrows are isomorphisms of monoids — which is well-defined up to composition
with a(n) [single!] inner automorphism of I1x (M?) and compatible [in the ev-
ident sense] with the equalities of submonoids Woy.¢, (M) = Wy, (M®) for distinct
value-profiles &1, &o. For simplicity, we shall use the notation

~

Tene(MP) 5 Tgau(MD); ooPerv(M?) 5 o Wgau(MY)
to denote these collections of compatible morphisms induced by restriction.

(iii) (Constant Monoids and Splittings) Denote the zero element of ||
by 0 € |F;|. Then [in the notation of (i)] the diagonal submonoid Vens(MS) r, )
determines — 1i.e., may be thought of as the graph of — an isomorphism of

monoids
Wens (M?)O - Wens (M?)(]Fl*)

that is compatible with the respective labeled GE(MS)‘)—actions. Moreover, the
restriction operations to zero-labeled evaluation points described in detail in
Corollary 2.8, (i), (i), (iii), determine a splitting up to torsion of each of the
Gaussian monoids
Ue(M?) = U

cns

(M) ry - €, WMD) = W

cns

(MS)) <]Fl*> ' 5@20

[cf. the definition of Ue(M?), o We(M?) in (ii)] which is compatible, relative to
the restriction isomorphisms of the third display of (ii), with the splittings up
to torsion of Proposition 3.1, (i).
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Proof. The various assertions of Corollary 3.5 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 3.5.1.

(i) Note that in Corollary 3.5, unlike the situation of Corollary 2.8, we took =y
to be = 1. This was done primarily to simplify the notation and does not result in
any substantive loss of generality. Indeed, one may always simply take the “M®” of
Corollary 3.5 to be the “(M©)?” of Corollary 2.8. Alternatively, one may observe
that the “0” that appears in the “D,‘; ,_ that occurs in the various restriction
operations invoked in Corollary 3.5 [cf. Corollary 2.8, (i), (ii)] is arbitrary, i.e., it is
subject to the independent conjugation indeterminacies discussed in Corollary 2.5,
(iii); Remark 2.5.2.

(ii) In the present context, it is useful to recall that from the point of view
of the discussion of [ITUTchl], Remark 3.2.3, (i), the various Iy (M?)-conjugacy
indeterminacies that appear in Corollary 3.5 are applied, in the context of the
theory of the present series of papers, to identify the various I1x (M?)-conjugates

of g (I\\/H?g) [or, alternatively, “/’s”] with one another.

Remark 3.5.2. Before proceeding, it is useful to pause to consider the significance
of the symmetrizing isomorphisms of Corollary 3.5, (i).

(i) We begin by discussing a simple combinatorial model of the phenomenon
of interest. Consider the totally ordered set E = {0,1} whose ordering is completely
determined by the inequality

0 < 1

— which we shall denote, in the following discussion, by the notation “<”. Then
one may consider labeled copies

=0 <1

of <. Now suppose that one attempts to identify these labeled copies <y, <1 by
simply forgetting the labels. This amounts, in effect, to sending the two distinct
subscripted labels

E > 0,1 — x

to a single point “x”. In particular, this naive approach to identifying the labeled
copies <, < fails to be compatible — in a sense that we shall examine in more
detail in the discussion to follow — with operations that require one to distinguish
the two labels 0,1 € E. Now if, to avoid confusion, one writes S for the underlying
set of F [i.e., obtained from E by forgetting the ordering on E], then one has a
natural Aut(S)-orbit of bijections

~

E = S ~ Aut(S)

— where Aut(S) = Z/27. Next, let us suppose that we are given an object F'(<)
functorially constructed from [the “totally ordered set of cardinality two”] <. Then
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any “factorization” of the functorial construction F'(—) [i.e., on “totally ordered
sets of cardinality two”] through a functorial construction

F™(S) A Aut(S)

on unordered sets of cardinality two [i.e., relative to the “forgetful functor” that
associates to an ordered set the underlying unordered set] may be thought of as
a collection of “symmetrizing isomorphisms” [cf. the discussion of (ii) below;
Corollary 3.5, (i)], or, alternatively, as “descent data” for F'(—) from E to the
“orbiset quotient” of S by Aut(S). Moreover, this “descent data” satisfies the
crucial property that it allows one to perform this “descent to the orbiset quotient”
in such a way that one is

never required to violate the bijective relationship — albeit via an in-
determinate bijection! — between E and S.

By contrast, the “naive approach” discussed above may be thought of as corre-
sponding to working with the “coarse set-theoretic quotient” @ of S by Aut(5)

— which we shall think of as consisting of a single point * o {0,1} € Q = {x}.

Now suppose, for instance, in the case F'(<) d:ef<, that one attempts to regard

F(=<) d:ef<(,) [where (—) € S| as an object “pulled back” from a copy <q [i.e.,
“Og < 1@"] of < over Q. On the other hand, if one wishes to relate each point

s € S to one or more points € Eg oo {0g,1q} via an Aut(S)-equivariant assign-
ment in such a way that every point of Fg appears in the image of this assignment,
then one has no choice but to assign to each point s € S the collection of all points
€ Eg. Put another way, one must contend with an independent indeterminacy

S — OQ? 1Q?

for each s € S — i.e., if we write S = {0g, 15}, then these indeterminacies give rise
to a total of 4 possibilities

Og — OQ? 1Q?
1lg — OQ? 1Q?

for the desired assignment, certain of which [i.e., 0g,1g + 0g and Og, 1s — 1¢] fail
to be bijective. Here, it is useful to note that to synchronize these indeterminacies
amounts, tautologically, to the requirement of an “automorphism of <g that induces
the unique nontrivial automorphism of the set Eg = {0¢g, 1g}”. On the other hand,
by the definition of an “inequality”, it is a tautology that such an automorphism of
=g cannot exist. Finally, in this context, it is useful to recall that this difference
between “crushing the set E to a single point” and “symmetrizing without violating
the bijective relationship to E” is precisely the topic of the discussion of [IUTchI],
Remark 4.9.2, (i); [IUTchl], Remark 6.12.4, (i) — cf., especially, [IUTchl], Fig. 4.5.

(ii) The starting point of the theory surrounding the symmetrizing isomor-
phisms of Corollary 3.5, (i), is the connectedness — or “single basepoint” —
observed in the discussion of Remark 2.6.1, (i), together with the compatibility of
this connectedness with a certain Ffi-symmetry, as discussed in Remark 2.6.2,
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(i). These symmetrizing isomorphisms may be applied to labeled copies of vari-
ous objects constructed from M? — e.g., U,s(M?), G, (M?), I1,,(M?) — cf. the
discussion of “conjugate synchromization” in Remark 2.6.1, (i). Note that in the
absence of the Ffi—symmetry involved, the “single basepoint” under consideration
has a rigidifying effect not only on the various conjugates involved, but also on
the labels under consideration. That is to say, a priori, it is quite possible that

the desired rigidity of the conjugates involved depends on the rigidity of
the labels under consideration.

Indeed, this is precisely what happens when the data that one wishes to synchronize
— i.e., such as monoids, absolute Galois groups, or cyclotomes — consists, for
instance, of an arrow from one label to another, as was [essentially] the case in the
discussion of the combinatorial model of (i). Put another way,

the significance of the Ffi—symmetry under consideration lies precisely
in the observation that this symmetry serves to eliminate this unwanted
“a priori” possibility.

This is in some sense the central principle illustrated by the combinatorial model
of (i). Put in other words, this “central principle” discussed in (i) may be sum-
marized, in the situation of Corollary 3.5, as follows: the Ffi-symmetry under
consideration allows one to construct

(a) symmetrizing isomorphisms [cf. Corollary 3.5, (i)]
in a fashion that is compatible with maintaining a

(b) bijective link with the set of labels LabCusp™ (ILx (M®))

— which is necessary in order to construct the Gaussian monoids [i.e., which
involve distinct values at distinct labels!] in Corollary 3.5, (ii) — all relative to

(c) a single basepoint [i.e., which gives rise to the single topological group
IIx (M9) — cf. the discussion of Remark 2.6.2, (i)]

— which is necessary in order to establish conjugate synchronization.

(ili) In the context of Corollary 3.5, (i), one essential aspect of the F,**-
symmetry under consideration is that this symmetry arises from a Ay (M®)-outer

action of Ac(MP)/Ax (M) 5 F/** [cf. the discussion of Remark 2.6.2, (i)]. That
is to say, the fact that this action may be formulated entirely in terms of conju-
gation by elements of geometric [i.e., “A”] fundamental groups — that is to say,
as opposed to arithmetic [i.e., “II”] fundamental groups — plays a crucial role in
establishing the conjugate synchronization of the various copies of “GE(M?)”

[and objects constructed from “G,(M®)”] under consideration [cf. the discussion
of [IUTchI], Remark 6.12.6, (ii)].

(iv) If one thinks of the F fi—symmetﬂes that appear in the conjugate synchro-
nization of Corollary 3.5, (i), as “connecting” the various copies of objects at distinct
evaluation points, then it is perhaps natural to regard the “conjugate synchro-
nization via symmetry” of Corollary 3.5, (i), as a sort of nonarchimedean
version of the “conjugate synchronization via connectedness” discussed in
Remark 2.6.1, (i), which may be thought of as being based on the “archimedean”
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connectedness of the subgraph I'% C I'x [cf. the discussion of Remarks 2.6.1, (i);
2.8.3].

(v) In §4 below, we shall generalize the ideas discussed in the present Remark
3.5.2 concerning conjugate synchronization in the case of v € V" to the global
portion, as well as to the portion at good v € V&°°4, of a D-O*°!_Hodge theater
[cf. the discussions of Remark 2.6.2, (i); Remark 3.8.2 below].

Remark 3.5.3. The delicacy and subtlety of the theory surrounding Corollary
3.5, (i), may be thought of as a consequence of the requirement of simultaneously
satisfying the conditions (a), (b), (c¢) discussed in Remark 3.5.2, (ii). On the other
hand, if one is willing to eliminate condition (c¢) from one’s arguments, then one may
obtain symmetrizing isomorphisms by simply applying the functors of [ITUTchI],
Proposition 6.8, (i), (ii), (iii); [IUTchI], Proposition 6.9, (i), (ii) — i.e., by passing
to D-0°-bridges or [holomorphic or mono-analytic] capsules or processions. Here,
we observe that this “multi-basepoint” approach to constructing symmetrizing
isomorphisms is compatible with the single basepoint ]Fl”i—symmetric approach of
Corollary 3.5, (i), relative to the evident “forgetful functors”. We leave the routine
details to the reader.

Corollary 3.6. (Frobenioid-theoretic Gaussian Monoids) Suppose that we
are in the situation of Proposition 3.3, i.e., that

M? = MP(E)

— where T;@ 1s a tempered Frobenioid. We continue to use the conventions

introduced in Corollary 3.5 concerning subscripted labels.

(i) (Labels, F*-Symmetries, and Conjugate Synchronization) The
isomorphism of Proposition 3.3, (ii) [or, alternatively, Proposition 1.3, (ii), (iii)],
determines, for each t € LabCuspi(Hi(M?)), a collection of compatible mor-
phisms o

<H§(M*@)t —>’> Go(MP): = Gu(M3)e

% %

(‘I’Tcﬂ)t :> \chns(M?>t
— which are well-defined up to composition with an inner automorphism of
ITy (M®) which is independent of t € LabCuspi(HK(Mf))) — as well as [F}'*-
]symmetrizing isomorphisms, induced by the Ax(M®)-outer action of Ffi =
Ac(M®)/Ax(M®) on x(M?D) [cf. Corollary 3.5, (i); Remark 1.1.1, (iv), or,
alternatively, Proposition 1.3, (ii), (iii)], between the data indezed by distinct t €

LabCusp™ (ITx (M?)).

(i) (Gaussian Monoids) For each value-profile & [cf. Corollary 3.5, (ii)],
write

VA (E) € VA (E) € ] (e

- %
[t|€F;
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~

for the submonoids determined, respectively, via the isomorphisms (Wic, )iy —
‘Ifcns(M*@)m of (i), by the monoids \Ilg(M*@), OO\Ilg(I\\AI*@) of Corollary 3.5, (ii), and

U (E) S {0 (E) | «¥ru(E) © {«Un(E) |

v =v

— where £ ranges over the value-profiles. Thus, each monoid ¥ r, (Tév) 18 equipped

with a natural action by G, (I\\/JI?)<F*>. Then by composing the Kummer isomor-
- l

phisms discussed in (i) above and Proposition 3.3, (i), (ii), with the restriction
isomorphisms of Corollary 3.5, (ii), one obtains a diagram of compatible mor-
phisms

Hgﬁ(M*@;) = Hyﬁ(Mfg) € {GQ(M*@;)|t|}|t|GF;¢< - {GQ(M?NH}|t|e]Fjé

% % % %

12

(M*@) = oo\I/£<M*@) oo\ljfg (T]: )

:2

oo\IjT_F?,a — OO\I’L

env

U U U U
\I/fff,a = (MD) = W (M) = \IJ]"&(U:TU)

env

— where the “--"in the first line [cf. also the second and third “~” in the sec-
ond line/ is as in Corollary 3.5, (ii); we recall the natural inclusion HE;(M*@‘) —
Iy (M®) — which is well-defined up to composition with a(n) [single!] inner
atﬁ:omorphism of x (M) and compatible f[in the evident sense] with the equal-
ities of submonoids involving “Woy.c(=)” [cf. Corollary 3.5, (ii)]. For simplicity,
we shall use the notation

~ ~ ~

Virpe — Uony(MP) = Ugu(M?) = U (TF);

oo\IjU—jg9 = oo Peny (M*@) = oo Vgan (M?) = ooV Fpan (Tiv)

to denote these collections of compatible morphisms.

(iii) (Constant Monoids and Splittings) Relative to the notational con-
ventions adopted thus far [cf. also Corollary 3.5, (iii)], the diagonal submonoid
(Vic, ),y determines — i.e., may be thought of as the graph of — an isomor-
phism of monoids

(Wie,Jo = (Wie,)ex)

that is compatible with the respective labeled GE(M?)—actions. Moreover, the
splittings of Corollary 3.5, (iii), determine splittings up to torsion of each of the
[“Frobenioid-theoretic”] Gaussian monoids

‘I’J—‘E(Tég) = (‘I’TXCE)QF;?) : Im(g)N, OO\II]‘-g(Téy) = (\Ilfcg)m?e} ’ Im(QQZO

— where “Im(§)” denotes the image of & via the isomorphisms discussed in (ii) —
which are compatible, relative to the various isomorphisms of the third display
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of (i), with the splittings up to torsion of Proposition 3.1, (i); Proposition 3.3, (i);
Corollary 3.5, (iii).

Proof. The various assertions of Corollary 3.6 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 3.6.1. The “Galois compatibility” denoted by the “¢--" in the third
display of Corollaries 3.5, (ii); 3.6, (ii) — involving the monoids “,,¥” [i.e., not
just the monoids “¥”!] — corresponds precisely to the “Galois functoriality” [cf.
Fig. 1.5] of the discussion of Remark 1.12.4.

Remark 3.6.2.  The diagram in the third display of Corollary 3.6, (ii) —
which may be thought of as a sort of concrete realization of the principle of Galois
evaluation discussed in Remark 1.12.4 [cf. also Remark 3.6.1] — will play a central
role in the theory of the present series of papers. Thus, it is of interest to pause
here to discuss various aspects of the significance of this diagram.

o » Kummer .
Frobenioid-theoretic group-theoretic
theta monoids - theta monoids
Galois | evaluation
Frobenioid-theoretic forget! group-theoretic
Gaussian monoids — Gaussian monoids
[i.e., theta values] [i.e., theta values]

Fig. 3.1: Kummer theory and Galois evaluation

(i) The left-hand, central, and right-hand portions of this diagram are summa-
rized, at a more conceptual level, in Fig. 3.1 above — that is to say, if one thinks
of the mono-theta environments “M®” involved as arising group-theoretically [i.e.,
from étale-like objects, which is, of course, always the case up to isomorphism! —
cf. the situation discussed in Corollary 3.7, (i), below], then these portions corre-
spond, respectively, to the arrows “=", “|}”, and “<=" in Fig. 3.1. Here, we note
that the final operation of “forgetting” [i.e., “<="] may be thought of as the op-
eration of forgetting the group-theoretic — i.e., “anabelian” — construction of the
Gaussian monoids, so as to obtain “abstract monoids stripped of any information
concerning the group-theoretic algorithms used to construct them” — which we
refer to as “post-anabelian” [cf. the discussion of Remark 1.11.3, (iii); Corollary
3.7, (i), below; the constructions of Definition 3.8 below]. On the other hand, the
composite of the arrows “=—" and “|}” may be thought of as a sort of

comparison isomorphism between “Frobenius-like” [i.e., “Frobenioid-
theoretic”] and “étale-like” [i.e., “group-theoretic”] structures
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— cf. the discussion of [Frdl], Introduction; [IUTchI], Corollaries 3.8, 3.9. In this
context, it is useful to recall that the comparison isomorphism of the “classical”
scheme-theoretic version of Hodge-Arakelov theory [cf. [HASurl], Theorem A] is
obtained precisely by evaluating theta functions and their derivatives at certain
torsion points of an elliptic curve.

(ii) The existence of both “Frobenius-like” and “étale-like” structures in the
theory of the present series of papers, together with the somewhat complicated
theory of comparison isomorphisms as discussed above in (i), prompts the following
question:

What are the various merits and demerits of “Frobenius-like” and “étale-
like” structures that require one to avail oneself of both types of structure
in the theory of the present series of papers [cf. Fig. 3.2 below|?

On the one hand, unlike Frobenius-like structures, étale-like structures — in the
form of étale or tempered fundamental groups [such as Galois groups| — have the
cructal advantage of being functorial or invariant with respect to various non-
ring /scheme-theoretic filters between distinct ring/scheme theories. In the
context of the present series of papers, the main examples of this phenomenon
consist of the O©-link [cf., e.g., [[UTchI|, Corollary 3.7] and the log-wall [cf. [Ab-
sToplII], §I1, §14; this theory will be incorporated into the present series of papers
in [ITUTchIII]]. Another important characteristic of the étale-like structures consti-
tuted by étale or tempered fundamental group is their “remarkable rigidity” — a
property that is exhibited explicitly [cf., e.g., the theory of [EtTh]; [AbsToplIII]]
by various anabelian algorithms that may be applied to construct, in a “purely
group-theoretic fashion”, various structures motivated by conventional scheme
theory. By contrast, the Frobenius-like structures constituted by various abstract
monoids — which typically give rise to various Frobenioids — satisfy the crucial
property of not being subject to such rigidifying anabelian algorithms that re-
late various étale-like structures to conventional scheme theory. It is precisely this
property of such abstract monoids that allows one to use these abstract monoids
to construct such non-scheme-theoretic filters as the ©-link [cf. [IUTchI],
Corollary 3.7] or the log-wall of the theory of [AbsToplII|. Here, it is interesting to
observe that

these merits/demerits of étale-like and Frobenius-like structures play some-
what complementary roles with respect to binding/not binding the
structures under consideration to conventional scheme theory.

Finally, we note that Kummer theory serves the crucial role [cf. the discussion
of (i)] of relating [via various comparison isomorphisms — cf. (i)] — within a given
Hodge theater — potentially non-scheme-theoretic Frobenius-like structures to
étale-like structures which are subject to anabelian rigidifications that bind them
to conventional scheme theory.

(iii) If one composes the correspondence “g +— © 7 [cf. the discussion of

=u
[[UTchI], Remark 3.8.1, (i)] constituted by the ©-link — i.e., which relates the
“(n + 1)-th generation q-parameter” to the “n-th generation ©-function” — with
the composite of the arrows “=", “|}”, and “<=" of Fig. 3.1, then one obtains a
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correspondence

.2
q {q’ }
v =0 Jigj<ix

[cf. Remark 2.5.1, (i)]. In fact, in the theory of the present series of papers, it is
ultimately this “modified version of the ©-link” — i.e., which takes into account the
Hodge-Arakelov-theoretic evaluation theory developed so far in §2 and the present §3
— that will be of interest to us. The theory of this “modified version of the ©-link”
will constitute one of the main topics treated in §4 below. Here, we observe that the
above correspondence may be thought of as a sort of “abstract, combinatorial
Frobenius lifting” — i.e., as a sort of “homotopy” between

- the identity ¢ ~ ¢ [i.e., which corresponds to “characteristic zero”)

and

- the purely monoid-theoretic/highly non-scheme-theoretic corre-

spondence q¢ +—» q(l%)2 [i.e., which corresponds to the “positive character-
=v =v

istic Frobenius morphism”].

Moreover, we recall [cf. the discussion of Remark 2.6.3] that the collection of ex-
ponents { jQ}lngl% that appear in this “abstract, combinatorial Frobenius lifting”
is highly distinguished — hence, in particular, far from arbitrary!

étale-like structures Frobenius-like structures

functoriality /invariance
with respect to —
log-wall, ©-link

rigidified relationship via
Kummer theory —

+ anabelian geom.
to conventional arith. geom.

lack of rigidification allows construction
— of non-scheme-theoretic filters,
such as log-wall, ©-link

Fig. 3.2: Etale-like versus Frobenius-like structures

(iv) In the context of the discussion of (i), it is of interest to recall that vari-
ous “Grothendieck Conjecture-type results” in anabelian geometry [e.g., over p-adic
local fields and finite fields] — i.e., which may be thought of as comparison iso-
morphisms between polynomial-function-theoretic and group-theoretic collections of
morphisms — are obtained precisely by combining various considerations particular
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to the situation of interest with the “Galois evaluation” vic Kummer theory

of polynomial functions or differential forms at various rational points — cf. the
theory of [pGC]J; [Cusp], §2.

Remark 3.6.3. Before proceeding, we make some observations concerning base-
points in the context of the “non-ring/scheme-theoretic filters” discussed in
Remark 3.6.2.

(i) First, let us recall from the elementary theory of étale fundamental groups
that the fiber functor associated to a basepoint is defined by considering the points
of a finite étale covering valued in some separably closed field that lie over a fixed
point [valued in the same separably closed field] of the base scheme over which
the covering is given. Thus, for instance, when this base scheme is the spectrum
of a field, the finite set of points associated by the fiber functor to a finite étale
covering is obtained by considering the various ring homomorphisms from this field
into some separably closed field. In particular, it follows that

the conventional scheme-theoretic definition of a basepoint [in the form
of a fiber functor] depends, in an essential fashion, on the ring/scheme
structure of the rings or schemes under consideration.

One immediate consequence of these elementary considerations — which is of cen-
tral importance in the theory of the present series of papers — is the following o0b-
servation concerning the “non-ring/scheme-theoretic filters” discussed in Remark
3.6.2, which relate one ring to another in a fashion that is incompatible with the
respective Ting structures:

The distinct ring structures on either side of one of the “non-ring/
scheme-theoretic filters” discussed in Remark 3.6.2 — i.e., the log-wall of
[AbsToplll] and the ©-link of [[UTchl], Corollary 3.7 — give rise to dis-
tinct, unrelated basepoints [cf. the discussion of [AbsToplll], Remark
3.7.7, (1)].

In some sense, the above discussion may be thought of as an “expanded, leisurely
version” of an observation made at the beginning of the discussion of [AbsToplII],
Remark 3.7.7, (i).

(ii) The observations of (i) also apply to the “N-th power morphisms” [where
N > 1] — i.e., “morphisms of Frobenius type” — that appear in the theory of
Frobenioids [cf. [Frdl], [FrdIl], [EtTh]]. That is to say, in the context of the
tempered Frobenioids that appear in the theory of [EtTh], §5, such “morphisms of
Frobenius type” [i.e., “N-th power morphisms” regarded as morphisms contained in
the underlying categories associated to these tempered Frobenioids| induce “N-th
power morphisms” between various monoids [arising from the Frobenioid structure]
isomorphic to O% . In particular,

these N-th power morphisms of monoids fail [since N > 1] to preserve
the ring structure of K,, hence give rise to distinct, unrelated base-
points on the domain and codomain objects of the original “morphism of
Frobenius type” [cf. the discussion of (i)].
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On the other hand, let us observe that unlike the situations considered in the dis-
cussion of (i), the considerations of the present discussion involving N-th power
morphisms take place in a fashion that is compatible with the projection func-
tor to the base category of the Frobenioid. One important consequence of this last
observation is that unlike the situations discussed in (i) involving the log-wall and
the ©-link in which one must consider arbitrary isomorphisms of topologi-
cal groups between the étale [or tempered]| fundamental groups that arise in the
domain and the codomain of the operation under consideration,

in the situation of the present discussion of N-th power morphisms, the
“distinct, unrelated basepoints” that arise only give rise to inner auto-
morphisms of the topological group determined by [i.e., roughly speak-
ing, the “fundamental group” of] the base category.

This phenomenon may be thought of as a reflection of the fact that the application
of an N-th power morphism is somewhat “milder” than the log-wall or ©-link
considered in (i) in that it only involves an operation — i.e., raising to the N-th
power — that is “algebraic”, in the sense that it is defined with respect to the
ring structure of the ring [e.g., K,] involved. This somewhat “milder nature” of
an N-th power morphism allows one to consider N-th power morphisms within a
single category [namely, the tempered Frobenioid under consideration] which can
be defined in terms of [formal] flat Ok, -schemes [cf. the point of view of [EtTh],
§1]. By contrast, the operation inherent in the log-wall or ©-link considered in
(i) is much more drastic and arithmetic [i.e., “non-algebraic”| in nature, and it
is difficult to see how to fit such an operation into a single category that somehow
“extends” the tempered Frobenioid under consideration in a fashion that “lies over”
the same base category as the tempered Frobenioid — cf., e.g., Remark 1.11.2, (ii),
in the case of the ©-link; the discussion of [AbsToplIl], Remark 3.7.7, in the case
of the log-wall. Put another way,

the highly nontrivial study of the mathematical structures “generated by
the log-wall and ©-link” is, in some sense, one of the main themes of the
theory of the present series of papers

— cf., especially, the theory of [[UTchIII]!

Remark 3.6.4. Since the theory of mono-theta environments developed in
[EtTh] plays a fundamental role in the theory of the present paper — cf., e.g.,
Corollaries 1.12, 2.8, 3.5, 3.6 — it is of interest to pause to review the relationship
of the theory of [EtTh] to the theory developed so far in the present paper.

(i) The various remarks following [EtTh], Corollary 5.12, discuss the signifi-
cance of the various rigidity properties of a mono-theta environment that are verified
in [EtTh]. The logical starting point of this discussion is the situation considered
in [EtTh], Remarks 5.12.1, 5.12.2, consisting of an abstract category which is only
known up to isomorphism [i.e., up to an indeterminate equivalence of categories],
and in which each of the objects is only known up to isomorphism. The main
example of such a category, in the context of the theory of [EtTh], is a tempered
Frobenioid of the sort considered in Propositions 3.3, 3.4; Corollary 3.6. The situa-
tion of [EtTh], Remarks 5.12.1, 5.12.2, in which each of the objects in the category
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is only known up to isomorphism, contrasts sharply with the notion of a system, or
tower, of [specificl] coverings — e.g., of the sort that appears in Kummer theory, in
which the coverings are related by [specific!] N-th power morphisms. Indeed, the
various rigidity properties verified in [EtTh] are of interest precisely because

they yield effective reconstruction algorithms for reconstructing the
various structures of interest in a fashion that is invariant with respect
to the indeterminacies that arise from a situation in which each of the
objects in the category is only known up to isomorphism.

This prompts the following question:

What is the fundamental reason, in the context of the theory of the
present series of papers, that one must work under the assumption that
each of the objects in the category is only known up to isomorphism,
thus requiring one to avail oneself of the rigidity theory of [EtTh]?

To understand the answer to this question, let us first observe that Kummer towers
involving [specific!] N-th power morphisms are constructed by using the multi-
plicative structure of the “rational functions” [such as the p,-adic local field K]
under consideration. That is to say, the N-th power morphisms are compatible
with the multiplicative structure, but not the additive structure of such rational
functions. On the other hand, ultimately,

when, in [IUTchIII], we consider the theory of the log-wall [cf. [Ab-
sToplIII]], it will be of crucial importance to consider, within each Hodge
theater, the ring structure [i.e., both the multiplicative and additive struc-
tures| of the fields K.

That is to say, without the ring structure on K,, one cannot even define the p,-
adic logarithm! Put another way, the N-th power morphisms that appear in a
Kummer tower may be thought of as “Frobenius morphisms of a sort” that relate
distinct ring structures — i.e., since the N-th power morphism fails to be compatible
with addition! In particular, the distinct ring structures that exist in the domain
and codomain of such a “Frobenius morphism” necessarily give rise to distinct,
unrelated basepoints [cf. the discussion of Remark 3.6.3, (ii)] — i.e., at an ab-
stract category-theoretic level, to objects which are only known up to isomorphism!
This is what requires one to contend with the indeterminacies discussed in [EtTh],
Remarks 5.12.1, 5.12.2.

(ii) The theory of [EtTh] may be summarized as asserting that one may re-
construct various structures of interest from a mono-theta environment without
sacrificing certain fundamental rigidity properties, even in a situation subject to
certain indeterminacies [cf. (i)]. Moreover, mono-theta environments serve as a
sort of bridge [cf. [EtTh], Remark 5.10.1] between tempered Frobenioids — i.e.,

“Frobenius-like structures” [cf. Remark 3.6.2] — as in Propositions 3.3, 3.4; Corol-
lary 3.6, on the one hand, and tempered fundamental groups [cf. Proposition 3.4]
— i.e., “Ctale-like structures [cf. Remark 3.6.2] — on the other.

(iii) One central feature of the theory of [EtTh] is an explanation of the special
role played by the first power of the [reciprocal of the I-th root of the] theta
function, a role which is reflected in the theory of cyclotomic rigidity developed
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in [EtTh] [cf. [EtTh], Introduction]. Note that the operation of Galois evaluation
is necessarily linear [cf. the discussion of Remark 1.12.4]. This linearity may be
seen in the linearity of the arrows “=", “|}”, and “<=" of Fig. 3.1. In particular,
these arrows are compatible with the ring structure on the constants [i.e., “K,”]
— a property that will be of crucial importance when, in [ITUTchIII]|, we consider
the theory of the log-wall [cf. the discussion of (i) above]. Moreover, this linearity
property of the operation of Galois evaluation implies that

the first power of the theta values of the [reciprocal of the l-th root of
the] theta function “inherits”, so to speak, the special role played by the
first power of the [reciprocal of the I-th root of the] theta function.

This observation is interesting in light of the discussions of Remarks 2.6.3; 3.6.2,
(iii).

(iv) In the context of (iii), we note that the various theta monoids discussed in
Propositions 3.1, 3.3, as well as the various Gaussian monoids discussed in Corol-
laries 3.5, 3.6, involve arbitrary powers/roots of the [reciprocal of the I-th root
of the] theta function. Nevertheless, it is important to remember that

in order to apply the ©-link — which requires one to work with “Frobe-
nius-like structures” [cf. the discussion of Remark 3.6.2, (ii)] — it is
necessary to consider the operation of Galois evaluation summarized in
Fig. 3.1 applied to the first power of the [reciprocal of the [-th root
of the] Frobenioid-theoretic theta function in order to avail oneself of the
cyclotomic rigidity furnished by the delicate bridge constituted by the
mono-theta environment

— cf. (ii) above. That is to say, the “narrow bridge” afforded by the mono-theta
environment between the worlds of “Frobenius-like” and “étale-like” structures may
only be crossed by the first power of the [reciprocal of the I-th root of the] theta
function and its theta values. Put another way,

from the point of view of the étale-like portion [i.e., “group-theoretic”
portion] of the operation of Galois evaluation summarized in Fig. 3.1, the
N-th power of the [reciprocal of the [-th root of the| Frobenioid-theoretic
theta function, for N > 1, is only defined as the N-th power “(—)”
of the first power of the [reciprocal of the I-th root of the|] Frobenioid-
theoretic theta function.

That is to say, from the point of view of the étale-like portion of the operation of
Galois evaluation summarized in Fig. 3.1, the N-th power of the [reciprocal of
the [-th root of the| Frobenioid-theoretic theta function, for N > 1 — hence, in
particular, the ©-link — may only be calculated by forming the N-th power
“(—)N7 of the first power of the [reciprocal of the I-th root of the] Frobenioid-
theoretic theta function.

(v) The necessity of working with “Frobenius-like structures” [cf. the discussion
of (iv)] may also be thought of as the necessity of working with the various post-
anabelian monoids arising from the group-theoretic “anabelian” algorithms that
appear in the operation of Galois evaluation [cf. the discussion of Remark 3.6.2,
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(i)]. In the context of this observation, it is useful to recall that from the point of
view of the theory of §1,

the “narrow bridge” furnished by [for instance, the cyclotomic rigidity
of] a mono-theta environment satisfies the crucial property of multira-
diality [cf. Corollaries 1.10, 1.12] — i.e., of being “horizontal” with
respect to the “connection structure” determined by the formulation
of this multiradiality [cf. the point of view discussed in Remarks 1.7.1,
1.9.2].

Put another way, to work with powers other than the first power of the [reciprocal of
the [-th root of the| theta function or its theta values gives rise to structures which
are “not horizontal” with respect to this “connection structure”. This point of
view is consistent with the point of view of Remark 3.6.5, (iii), below. A similar
observation concerning multiradiality will also apply to the “multiradial versions of
the Gaussian monoids” that will be constructed in [IUTchIII] [cf. Remark 3.7.1
below].

Remark 3.6.5. In light of the central role played by mono-theta-theoretic
cyclotomic rigidity in the discussion of Remark 3.6.4, we pause to make some
observations — of a somewhat more philosophical nature — concerning this topic.

(i) First of all, we observe that

a cyclotome may be thought of as a sort of “skeleton of the arithmetic
holomorphic structure” under consideration

— cf. the discussion of Remark 1.11.6. Indeed, this point of view may be thought
of as being motivated by the situation at archimedean primes, where the circle “St”
may be thought of as a sort of “representative skeleton of C*”. This point of view
will play a central role in the remainder of the discussion of the present Remark
3.6.5, as well as in the discussion of Remark 3.8.3 below.

(ii) In the theory of [EtTh],

(a) the commutator structure [—, —| of the theta group plays a central
role in the theory of mono-theta-theoretic cyclotomic rigidity

— cf. [EtTh], Introduction; [EtTh|, Remark 2.19.2. On the other hand, in the
classical theory of algebraic theta functions

(b) the commutator structure [—, —| of the theta group plays a central role
in the theory via the observation that this commutator structure implies
the irreducibility of certain representations of the theta group.

At first glance, these two applications (a), (b) of the commutator structure [—, —]
of the theta group may appear to be unrelated. In fact, however, they may both
be understood as examples of the following phenomenon:

(¢) the commutator structure [—, —| of the theta group may be thought
of as a sort of concrete embodiment of the “coherence of holomorphic
structures”.
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Indeed, as discussed in [EtTh], Introduction, from the point of view of the scheme-
theoretic Hodge-Arakelov theory of [HASurl], [HASurIlI}, the irreducible representa-
tions that appear in the classical theory of algebraic theta functions as submodules
of the module of all set-theoretic functions on the [-torsion points of an elliptic curve
[cf. (b)] may be thought of, for instance, when [ is large, as discrete analogues of
the submodule of “holomorphic functions” within the module of all real analytic
functions. On the other hand, if one thinks of cyclotomes as “skeleta of arithmetic
holomorphic structures” [cf. (i)], then the theory of conjugate synchronization
[cf. Remark 3.5.2, as well as Remark 3.8.3 below| — applied, for instance, in the
case of cyclotomes — may be thought of as a sort of “discretely parametrized” [in
the sense that it is indexed by torsion points| coherence of arithmetic holo-
morphic structures, which is obtained by working with the connected subgraph
I'Y CTx [cf. Remark 2.6.1, (i)]. In this context, mono-theta-theoretic cyclotomic

rigidity Ef. (a)] may be thought of as a sort of “continuously parametrized version”
[i.e., supported on Y , as opposed to a finite set of torsion points] of this coherence

of arithmetic holomorphic structures. Finally, we recall that the interaction — i.e.,
via restriction operations — between these “discrete” and “continuous” versions
of the “coherence of arithmetic holomorphic structures” plays a central role in the
theory of Galois evaluation given in Corollaries 2.8, (i); 3.5, (ii); 3.6, (ii).

(i) If one thinks of cyclotomes at localizations [say, at v € V"] of a number
field [i.e., K] as local skeleta of the arithmetic holomorphic structure [cf. (i)], then

the mono-theta-theoretic cyclotomic rigidity may be thought of as a
sort of “local uniformization” of a number field [cf. the exterior cyclo-
tome of a mono-theta environment that arises from a tempered Frobenioid,
as in Proposition 1.3, (i)] via a local portion [cf. the interior cyclotome
in the situation of Proposition 1.3, (i)] of the geometric tempered funda-
mental group A, associated to a certain covering of the once-punctured
elliptic curve Xp [cf. Definition 2.3, (i); [IUTchl], Definition 3.1, (e)].

Since the cyclotomic rigidity isomorphism arising from mono-theta-theoretic cyclo-
tomic rigidity may be thought of as the “cyclotomic portion” of the theta function,
mono-theta-theoretic cyclotomic rigidity may be interpreted as the statement that
the theta function constructed from a mono-theta environment is free of any Zx-
power indeterminacies. Moreover, if one takes this point of view, then

constant multiple rigidity may be thought of as the statement that
the above “local uniformization” is sufficiently rigid as to be free of any
constant multiple indeterminacies.

Here, it is useful to recall that the once-punctured elliptic curve Xz on the number
field F' that occurs in the theory of the present series of papers may be thought of as
being analogous to the nilpotent ordinary indigenous bundles on a hyperbolic
curve in positive characteristic in p-adic Teichmiiller theory [cf. the discussion of
[AbsToplII], §I5]. That it to say, from this point of view, the “local uniformiza-
tions” of the above discussion may be thought of as corresponding to the local
uniformizations via canonical coordinates of p-adic Teichmiiller theory [cf.,
e.g., [pTeich], §0.9], which are also “sufficiently rigid” as to be free of any 7% -power
or constant multiple indeterminacies. Here, mono-theta-theoretic cyclotomic rigid-
ity may be thought of as corresponding to the Kodaira-Spencer isomorphism
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[associated to the Hodge section of the canonical indigenous bundle], which, in some
sense, may be thought of as the “skeleton” of the local uniformizations of p-adic
Teichmiiller theory. Also, it is useful to recall in this context that the canonical
coordinates of p-adic Teichmiiller theory are constructed by considering invariants
with respect to certain canonical Frobenius liftings. Put another way, the technique
of considering Frobenius-invariants allows one to pass, in a canonical way, from
objects defined modulo p to objects defined modulo higher powers of p. Since the
various O-links of the Frobenius-picture may be regarded as corresponding to the
various transitions from “mod p™ to mod p"*t'” [where n € N] in the theory of
Witt vectors [cf. the discussion of [IUTchI], §14; [IUTchIII], Remark 1.4.1, (iii)],
it is natural to regard, in the context of the canonical splittings furnished by the
étale-picture [cf. the discussion of [ITUTchI], §11],

the multiradiality of the formulation of mono-theta-theoretic cyclotomic
rigidity and constant multiple rigidity given in Corollary 1.12 as corre-
sponding to the Frobenius-invariant nature of the canonical coordinates
of p-adic Teichmiiller theory.

Finally, in this context, we observe that it is perhaps natural to think of the dis-
crete rigidity of the theory of [EtTh] as corresponding to the fact that the canoni-
cal coordinates of p-adic Teichmiiller theory, which a priori may only be constructed
as PD-formal power series, may in fact be constructed as power series in the
usual sense, i.e., elements of the completion O of the local ring at the point under
consideration. Indeed, the discrete rigidity of [EtTh] implies that one may restrict
oneself to working with the usual theta function, canonical multiplicative coordi-
nates [i.e., “U”], and g-parameters on appropriate tempered coverings of the Tate
curve, all of which, like the power series arising from canonical parameters in p-adic
Teichmiiller theory, give rise to “functions on suitable formal schemes” in the sense
of classical scheme theory. By contrast, if this discrete rigidity were to fa:l, then one
would be obliged to work in an “a priori profinite” framework that involves, for in-
stance, Z-powers of “U” and “q” [cf. [EtTh], Remarks 1.6.4, 2.19.4]. Such Z-powers
appear naturally in the Z-modules that arise [e.g., as cohomology modules] in the
Kummer theory of the theta function and may be thought of as corresponding to
PD-formal power series in the sense that arbitrary @—powers of canonical parame-
ters [say, for simplicity, at non-cuspidal ordinary points of a canonical curve], which
arise naturally when one considers such parameters additively [cf. the discussion
of “canonical affine coordinates” in [pOrd|, Chapter III], cannot be defined if one
restricts oneself to working with conventional power series — i.e., such (’3—povvers
may only be defined if one allows oneself to work with PD-formal power series.

Corollary 3.7. (Group-theoretic Gaussian Monoids and Uniradiality)
Suppose that we are in the situation of Proposition 3.4, i.e., in the following, we
consider the full poly-isomorphism

MP(IL) = M2('E)

=v
— where M9 (IL,) is the projective system of mono-theta environments arising from
the algorithm of Proposition 1.2, (i) [cf. also Proposition 1.5, (i)/; T;ﬂ is a tem-

pered Frobenioid as in Proposition 3.3 — of projective systems of mono-
theta environments. When ‘M9 ” is taken to be M?(Tév), we shall denote the
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resulting “I\\/JI?‘ 7 by M?‘(Tiv) [ef. Definition 2.7, (ii)]. When “M®” is taken to
be MO (IL,), we shall identify 11,5 (M?;) and GE(I\\/JI*@‘) [¢f. Definition 2.7, (ii)]
with I,z and G,(IL,z) [cf. Corollary 2.5, (i)], respectively, via the tautological
isomorphisms 1L,z (M?‘) = Iz, GE(MS);) = Gy(Il,g ). Finally, we shall follow
the notational conventions of Corollaries 3.5, 3.6 with regard to the subscripts
87, for [t| € [Fil, and “F}")".

(i) (From Group-theoretic to Post-anabelian Gaussian Monoids) Fach
isomorphism of projective systems of mono-theta environments M (IL,) = M?(Tiv)

induces compatible [in the evident sense] collections of isomorphisms

Hgﬁ €= {GQ(HQS)M}|t|eIFfé

(M? (Hv)) :> OO\IJ£<M@(HU))

\I]éznv (M? (HE)) :> \Ilf (M? (HE))
= {GQ(M?;(Tég))It\hﬂe]Ff - {GQ(M?(Tgy))thﬂeFf
5 <UM2('E)) = ~Ur(TE)
U U

5 V(MO (TE,)) E vr (1F)

and

Gy(IL,) = Gy(Hyi ) (F)
‘I’énv(M?(Hg))X = ‘I’E(M?(Hg))x

S GMG(E)) ey, B GuMP(ME)) e,

=uv
N ~

S5 wMOCL)* S UR(E)”

— where the upper left-hand portion of the first display [involving “c--"] is
obtained by applying the third display [involving “--"] of Corollary 3.5, (ii), in
the case where “M®” is taken to be M?(Hg); the isomorphisms that relate the
upper left-hand portion of the first display to the lower right-hand portion of the
first display arise from the functoriality of the algorithms involved, relative to
isomorphisms of projective systems of mono-theta environments; the lower right-
hand portion of the first display is obtained by applying the right-hand portion
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of the third display of Corollary 3.6, (ii), in the case where ‘M7 is taken to be
M9 (Tév); the second display is obtained from the first display by considering the

units [c_lenoted by means of a superscript “x”/.

(ii) (Uniradiality of Gaussian Monoids) If we write \I/].-&(Tiv)x“ for the
ind-topological monoid obtained by forming the quotient of W r, (Tév) x b_y its torsion

subgroup, then the functorial algorithms

M, = Veuu(M2(Iy); Ty — oo Wgau (M (I1,))

— where we think of Vgan(M2(IL,)), oo Vgau(MP(IL,)) as being equipped with their
natural splittings up to torsion [cf. Corollary 3.5, (iii)] and, in the case of
Uyou(MO(IL,)), the natural G, (11, )-action [cf. Corollary 5.5, (ii)] — obtained by
composing the algorithms of Proposition 1.2, (i); Corollary 3.5, (i), (iii), depend
on the cyclotomic rigidity isomorphism of Corollary 1.11, (b) [cf. Remark
1.11.5, (ii); the use of the surjection of Remark 1.11.5, (i), in the algorithms of
Proposition 3.1, (i), and Corollary 3.5, (ii)], hence fail to be compatible, rela-
tive to the displayed diagrams of (i), with automorphisms of [the underlying pair,
consisting of an ind-topological monoid equipped with the action of a topological
group, determined by/ the pair

GoMP(VE)) ey, ~ Ur(E)*

which arise from automorphisms of [the underlying pair, consisting of an ind-

topological monoid equipped with the action of a topological group, determined by/

the pair GU(M*@(va))@%) ~ \I/]:&(va)x [¢f. Remarks 1.11.1, (i), (b); 1.8.1] —
v L ; L

i the sense that this algorithm, as giver?, only admits a uniradial formulation [cf.
Remarks 1.11.3, (v); 1.11.5, (ii)].

Proof. The various assertions of Corollary 3.7 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 3.7.1. One central consequence of the theory to be developed in
[TUTChIII] [cf. Remarks 2.9.1, (iii); 3.4.1, (ii)] is the result that,

by applying the theory of log-shells [cf. [AbsToplII]], one may modify the
algorithms of Corollary 3.7, (ii), in such a way as to obtain algorithms
for computing the Gaussian monoids that [yield functors which| are
manifestly multiradially defined

— albeit at the cost of allowing for certain [relatively mild!] indeterminacies.

The following definition in some sense summarizes the theory of the present
§3.

Definition 3.8. Many of the “monoids equipped with a Galois action” that
appear in the discussion of the present §3 may be thought of as giving rise to
Frobenioids, as follows.



INTER-UNIVERSAL TEICHMULLER THEORY II 113

(i) Each of the monoids equipped with a IIx (M?)-action
HX(MS)) N Wens (M?), HK(M*@) ~ Vie,

of Propositions 3.1, (ii); 3.3, (ii), gives rise to a py-adic Frobenioid of monoid type
Z [cf. [Frdll], Example 1.1, (ii)]

~Fcns(l\/ﬂ*e); fTCE

whose divisor monoid associates to every object of B*™P(ILy(M?))°? a monoid

isomorphic to Q>¢. It follows immediately from the construction of the data
“Ux (M) ~ ie,” [cf. Example 3.2, (ii)] that one has a tautological isomor-

phism of Frobenioids

fc, = Fie,

[cf. the discussion of [IUTchl], Example 3.2, (iii), (iv)], which we shall use to identify
these two Frobenioids. Thus, the isomorphism of monoids of Proposition 3.3, (ii),
may be interpreted as an isomorphism of Frobenioids

ic, 5 Fens(M?)

~

— which also admits [indeed, induces] a “mono-analytic version” 1Ct, = F-

(M)
[cf. the category “C,” of [IUTchI], Example 3.2, (iv)]. This mono-analytic version
admits a “labeled version” [cf. Remark 3.8.1 below]

(e = (FensMD)y
— cf. Corollary 3.6, (i). Finally, one has Frobenioid-theoretic interpretations
(FeusM)) (s (FansMD)o = (Flns(MD)) g,
e ey (CHo = (TC£)<]F;:€)
of the constructions of Corollary 3.5, (iii); 3.6, (iii).

(ii) Each of the monoids equipped with a topological group action

G,(MS;) ~ Wt

env

(M2);  G,(MS$) ~ Tige,
GE<M*®$)(]FZ*) ~ Te(MP); GQ(M*@><JF7‘> r~ \I'fs(Tiv)

[cf. Proposition 3.1, (i); Proposition 3.3, (i); Corollary 3.5, (ii); Corollary 3.6, (ii)]
gives rise to a p,-adic Frobenioid of monoid type 7 [cf. [Frdll], Example 1.1, (ii)]
f'l,

env

MD); Firpas FeMD): Fr(E)

whose divisor monoid associates to every object of B'*™P(G,(—))" [where “(—)” is
M?; or M®] a monoid isomorphic to N. Moreover, each of these Frobenioids is
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equipped with a collection of splittings [cf. Proposition 3.1, (i); Proposition 3.3, (i);
Corollary 3.5, (iii); Corollary 3.6, (iii)]. Also, we shall write

For(M®) = { FLsM9) } 1 Firo & { Firon |
FonM2) = { Fe) |+ Fro(E£) = { Fr(E) |

[cf. the notation of Proposition 3.1, (i); Proposition 3.3, (i); Corollary 3.5, (ii);
Corollary 3.6, (ii)]. It follows 1mmed1ately from the construction of the data
“GE(I\\/JI?g) ~ Wire,” [cf. Example 3.2, (i)] that one has a tautological iso-

morphism of Frobenioids
TCEG) = FiFe a

which is compatible with the associated splittings [cf. the discussion of [ITUTchI], Ex-
ample 3.2, (v)], and which we shall use to identify these two split Frobenioids. Thus,
the isomorphisms of monoids in the bottom line of the third display of Corollary
3.6, (ii), may be interpreted as isomorphisms of split Frobenioids

~

.7:7]:1()9& — F

0 S FMD) S Fr(E)

env(

[cf. Proposition 3.3, (i); Corollary 3.5, (iii); Corollary 3.6, (iii)] which are compatible
with the subcategories

FaeM?) € FeMO):  Fr (E) < Fr(E)

determined by the submonoids “Wo;.¢(—)” [cf. Corollaries 3.5, (ii); 3.6, (ii)] and
which yield isomorphisms of collections of split Frobenioids

~

JT'-T}'? :> Fenv(M?) :> ’Fgau(M?) - ‘F}—gau (T‘F )

[cf. the fourth display of Corollary 3.6, (ii)].

(iii) The direct products in which the submonoids W¢(M?) and W £, (Tév) are

constructed [cf. the second display of Corollary 3.5, (ii); the first display of Corollary
3.6, (ii)] determine natural embeddings of categories [cf. Remark 3.8.1 below]

F§<M*@) — H Cns |t|7 .7:.]-2 (Tég) — H (TC'E_)M

|t|eF* |t|eF}*

which coincide on the subcategories For.e (M) C Fe(M?), Fr,, . (1 F)C Fr (Tév).
We shall write [cf. Remark 3.8.1 below] - -

S) - def @
fgau(M*> — Fcns H cns M |t|
|t|eF*

def
J:fgau(TJ::E) — (TCDF;% = I (ech
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for the collections of embeddings of categories obtained by allowing & to vary. These
embeddings may be thought of as “Gaussian distributions” and are depicted in
Fig. 3.3 below. In this context, it is useful to observe that we also have natural

diagonal embeddings of categories, i.e., “constant distributions” [cf. Remark
3.8.1 below]

fé_ns(M*@) _> f:ns(MS))@Ff) — fgns( * H cns Me \t|
[t|eF}
e, 5 (s = (e = ]I (o
[t|€F}
— where the “ = ’s” denote the tautological isomorphisms — cf. the discussion

[and notational conventions!] of [ITUTchl], Example 5.4, (i); [IUTchl], Fig. 5.1.

IS]

O O O O

O 0O O O
IS

",

S
0O O o o
IS4

Fig. 3.3: Gaussian distribution

Remark 3.8.1. In the present series of papers, we follow the convention [cf.
[[IUTchI], §0] that an “isomorphism of categories” is to be understood as an isomor-
phism class of equivalences of categories. On the other hand, in the context of the
discussion of Frobenioids in Definition 3.8, in order to obtain a precise “Frobenioid-
theoretic translation” of the results obtained so far [in the language of monoids] that
involve the phenomenon of conjugate synchronization [cf. Remark 3.5.2; the
discussion of Remark 3.8.3 below], one is obliged to consider the various Frobenioids
indexed by a subscript “|t| € |F;|” as being determined up to an isomorphism of the
identity functor — i.e., corresponding to an “inner automorphism” in the context
of Corollaries 3.5, (i); 3.6, (i) — which is independent of |t| € |F;|. In particular,
when there is a danger of confusion, perhaps the simplest approach is to resort to
the original “monoid-theoretic formulations” of Corollaries 3.5, 3.6.
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Remark 3.8.2. At this point, it is of interest to pause to discuss the relation-
ship between the theory of the present §3 and the theories of Ff‘i-symmetry [cf.
[IUTchI], §6] and F;*-symmetry [cf. [IUTchI], §4, §5] developed in [IUTchI].

(i) First of all, the construction algorithms for the Gaussian monoids dis-
cussed in Corollaries 3.5, (ii); 3.6, (ii), as well as for the closely relating splittings
discussed in Corollaries 3.5, (iii); 3.6, (iii), involve restriction to the decompo-
sition groups of torsion points indexed [via a functorial algorithm]| by profinite
conjugacy classes of cusps [cf. Corollary 2.4, (ii)] which are subject to a certain
F**-symmetry [cf. Corollary 2.4, (iii)]. This F,'*-symmetry may be thought of
as the restriction, to the portion labeled by the valuation v € VP24 ynder consid-
eration, of the F)**-symmetry [cf. [TUTchI], Proposition 6.8, (i)] associated to a
D-0FHodge theater [cf. Remark 2.6.2, (i)]. From the point of view of the issue
of “which portion of the original once-punctured elliptic curve over a number field
X [cf. [IUTchI], Definition 3.1] is involved”, this theory of split Gaussian monoids
revolves around various labeled [i.e., by elements of copies of IF; or |F|] copies of the
local Frobenioids at v of the mono-analyticizations of the F-prime-strips that
appear in a D-O*°_Hodge theater — cf. the various natural embeddings dis-
cussed in Definition 3.8, (iii) — i.e., more concretely, copies of the portion of the pair
“Gy(IIy) ~ O%U” determined by a certain submonoid of (9% . Finally, we recall

v

that after one executes these construction algorithms for split Gaussian monoids
and observes the Ffi—symmetry discussed above, one may then form holomorphic
or mono-analytic processions, indexed by subsets of ||, as discussed in [ITUTchI],
Proposition 6.9, (i), (ii).

(ii) On the other hand, by applying the algorithm of [IUTchI], Proposition 6.7,
one may pass to the local portion at v € V** of a D-ONF-Hodge theater. At the
level of labels, this amounts to removing the label 0 € |F;| and identifying this label
with the complement of 0 in |Fy|, i.e., with F}* — cf. the assignment

“0, = = >7

of D-prime-strips discussed in [IUTchI], Proposition 6.7. At the level of local Frobe-
nioids at v € VP24 li.e., copies of the pair “II, ~ O% ”] corresponding to these

labels, this assignment may be thought of as corresponding to the isomorphisms
of monoids “W.,s(MO)y = \IJCHS(M?)w;:e)” and “(Uic )o — (\I/TCU)<F;§>” dis-
cussed in the first displays of Corollaries 3.5, (iii); 3.6, (iii). This newly obtained
situation involving the local portion at v € V** of a D-ONF-Hodge theater admits
an F*-symmetry [cf. [IUTchI], Proposition 4.9, (i)] — cf. the discussion of the
F,'*-symmetry in the situation of (i). As we shall see in §4 below, at least at the
level of value groups, this newly obtained situation involving Fl*—symmetries is
well-suited to relating the theory of the present §3 at v € V24 to the valuations
€ Vo4 as well as to the global theory of [[UTchI], §5. This global theory satisfies
the crucial property that it allows one to relate the multiplicative and additive
structures of a global number field [cf. the discussion of [IUTchl], Remark 4.3.2;
[IUTchl], Remark 6.12.5, (ii)]. Finally, starting from this newly obtained situation,
one may proceed to form holomorphic or mono-analytic processions, indexed by
subsets of F;*, as discussed in [IUTchI], Proposition 4.11, (i), (ii), which are com-
patible [cf. [[UTchl], Proposition 6.9, (iii)] with the “|F;|-processions” discussed in

(i).
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Remark 3.8.3. One central theme of the theory of the present §3 is the ap-
plication of the phenomenon of conjugate synchronization [cf. Remark 3.5.2],
which plays a fundamental role in the theory of the group-theoretic version of
Hodge-Arakelov-theoretic evaluation of the theta function developed in §2. Thus,
it is of interest to pause to discuss precisely what was gained in the present §3 by
applying the conjugate synchronization obtained in §2.

(i) We begin our discussion by reviewing the following direct technical conse-
quences of the conjugate synchronization discussed in Remark 3.5.2:

(a) the isomorphisms of monoids

~

UensMD) | = CensMD) 15 (Tie i) = (Treitali (Wie e = Pens (M)

— where |[t|, |[t1],|t2| € |Fi|; the third isomorphism is well-defined up to
an inner automorphism indeterminacy that is independent of |¢| — dis-
cussed in Corollaries 3.5, (i); 3.6, (i);

(b) the construction of well-defined diagonal submonoids

\I]cns<MS))<|IFZ|> - H \IJCHS(MS))M; \IICHS(MS)><FZ*> - H ‘Ilcns(MS))M
|t| €[ |t|eF}*

in Corollary 3.5, (i), and the corresponding diagonal embeddings of cate-
gories — i.e., “constant distributions” — discussed in Definition 3.8, (iii);

(c¢) the well-defined isomorphisms of monoids

~ ~

\Ifcns(M?)O — mcns(M?)(Ff); (\I’Tcz)o - (\I’TCE>(]FZ*)

of Corollaries 3.5, (iii); 3.6, (iii);

(d) the restriction to the units of the [composite] isomorphism of monoids

Uiro, — \Iffs(va)

that appears in the third display of Corollary 3.6, (ii) [cf. also Fig. 3.1;
the discussion of Remark 3.6.2, (i)].

Here, we observe that (b) and (c) may be thought of as formal consequences of
(a), while (d) may be thought of as an alternate formulation of the portion of (a)
concerning the units in the case of |t| € Fl* Moreover, as discussed in Remark 3.6.2,
(iii), ultimately, in the present series of papers, we shall be interested in composing
the ©-link with the composite of the arrows “=-", “|}”, and “<=" of Fig. 3.1 —
i.e., with the isomorphism of monoids that appears in the display of (d). Indeed,
from the point of view of the theory of the present series of papers,

our main application [cf. §4 below| of the conjugate synchronization
discussed in Remark 3.5.2 will consist precisely of the isomorphism of
units of (d), in the context of composition with the ©-link — cf. the
“coricity of O*” given in [IUTchI|, Corollary 3.7, (iii).
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Finally, in this context, we recall that the isomorphisms of monoids that appear in
the ©-link or in the third display of Corollary 3.6, (ii), only make sense if one works
with post-anabelian abstract monoids/Frobenioids — i.e., with “Frobenius-like”
structures [cf. the discussion of Remark 3.6.2, (i), (ii)].

(ii) In [IUTchIII], it will be of central importance to consider the theory of
the present paper in the context of the log-wall [i.e., the situation considered in
[AbsTopllII]]. In the context of the log-wall, it will be of fundamental importance to
construct versions of the various Frobenioid-theoretic theta and Gaussian monoids
that appeared in the discussion at the end of (i) that are capable of “penetrating the
log-wall” [cf. the discussion of [AbsToplll], §14] — i.e., to construct étale-like ver-
sions of these Frobenioid-theoretic theta and Gaussian monoids, by availing oneself
of the right-hand portion of Fig. 3.1. Now to pass from these Frobenioid-theoretic
monoids to their étale-like counterparts, one must apply Kummer theory — cf.
the arrow “=" of Fig. 3.1. Moreover, in order to apply Kummer theory, one
must avail oneself of the cyclotomes contained in [i.e., the torsion subgroups of]
the various groups of units of the relevant monoids. It is at this point that it is
necessary to apply, in the fashion discussed in (i), the conjugate synchroniza-
tion discussed in Remark 3.5.2 in an essential way. That is to say, if one is in a
situation in which one cannot avail oneself of this conjugate synchronization, then
it follows from the distinct, unrelated nature of the basepoints on either side
of the log-wall [cf. the discussion of Remark 3.6.3, (i)] that

one may only construct diagonal embeddings of either submonoids of Galois-
invariants or sets of Galois-orbits of the various constant monoids [i.e.,
“Wps”| involved.

On the other hand, such Galois-invariants or Galois-orbits are clearly insufficient
for conducting Kummer theory [cf. [IUTchIII], Remark 1.5.1, (ii), for a discussion
of a related topic]. Moreover, the operation of passing to sets of Galois-orbits fails
to be compatible with the ring structure — e.g., the additive structure — on [the
formal union with “{0}” of] the various constant monoids. Such an incompatibility
is unacceptable in the context of the theory of the present series of papers since
it is impossible to develop the theory of the log-wall [cf. [AbsToplIl]; [IUTchIII]]
without applying the ring structure within each Hodge theater [cf. the discussion
of Remark 3.6.4, (i)].

(iii) As discussed at the beginning of §1, the problem of giving an explicit
description of what one arithmetic holomorphic structure looks like from the
point of view of a distinct arithmetic holomorphic structure that is only related to
the original arithmetic holomorphic structure via some mono-analytic core is one of
the central themes of the theory of the present series of papers. The phenomenon
of conjugate synchronization as discussed in (i) and (ii) above, as well as the closely
related phenomenon of mono-theta-theoretic cyclotomic rigidity [cf. the discussion
of Remark 3.6.5, (ii)], may be thought of as particular instances of this general
theme. Indeed, from the point of view of classical discussions of scheme-theoretic
arithmetic geometry,

the “natural isomorphisms” that exist between vartous cyclotomes
that appear in a discussion are typically taken for granted
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— i.e., typically no attention is given to the issue of devising explicit, intrinsic
reconstruction algorithms for these “natural isomorphisms” between cyclotomes.
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Section 4: Global Gaussian Frobenioids

In the present §4, we generalize the theory of Gaussian monoids, devel-
oped in §3 in the case of bad v € VP2 first to the case of nonarchimedean and
archimedean good v € V&°°? and then to the global case. One important feature
of these generalizations, especially in the global case, is the theme of compatibility
with the theory of ONF- (respectively, ©F¢!l-) Hodge theaters — and, in particu-
lar, the Ff— (respectively, Ffi-) symmetries of such Hodge theaters — developed
in [IUTchI], §4, §5 (respectively, [ITUTchI], §6).

In the following discussion, we assume that we have been given initial ©-
data as in [IUTchI], Definition 3.1. We begin our discussion by considering good
nonarchimedean v € V&°°4 vren,

Proposition 4.1. (Group-theoretic Gaussian Monoids at Good Nonar-
chimedean Primes) Letv € VE°°1 V™", In the notation of [[UTchI], Definition
3.1, (e), (f), write

def

I, < Mx < I

v

def def
=y, © I = o,

[¢f. Definition 2.3, (i), in the case of v € V"*] — s0 H:EE/HE = ZJIZ [cf. the
discussion preceding [IUTchl], Definition 1.1], HZ”/HEi = Ffi;

I, - Gy(Ily), Iy —» Gy(II}), I — Gy (II5™)

~

for the quotients — which admit natural isomorphisms G,(IL,) = G,(ILE) 5
G, (IIS") 5 Gy — determined by the natural surjections to Gy; Ay, AE AT for
the re_spective kernels of these quotients. Also, we recall that H;—L, Hff;, G;(HE),
Gy (IIE), and G,(II°") may be reconstructed algorithmically [cf [IUTchl],

Corollary 1.2, and its proof; [AbsAnab], Lemma 1.8.8] from the topological group
IL,.

(i) (Constant Monoids) The functorial group-theoretic algorithm of [Ab-
sToplll], Corollary 1.10, (b) [cf. also the discussion of Remark 1.11.5, (i), in
the case of v € V*™; the discussion of “M,(—=)” in [IUTchI], Definition 5.2, (v)]
yields a functorial group-theoretic algorithm in the topological group G, for
constructing the ind-topological submonoid [which is naturally isomorphic to

oL |
B Vens(Gy) C lim H'(J, p(Gy))
J

— where J ranges over the open subgroups of Gy; :“i(Gy) is as in [AbsToplIl],
Corollary 1.10, (b) — equipped with its natural G,-action. In particular, we obtain
a functorial group-theoretic algorithm in the topological group IL, for constructing
the ind-topological submonoid

\I]cns<Hg) d:ef \I]cns<Gg(Hy)) g hTH} Hl (GQ(HE)LU “i(GE(HE)))

- h_§r>l HI(H;HJaN’Z\(GQ(Hg))) C h7H} HI(H2|J7N’Z\(GQ(H2)))
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— where J ranges over the open subgroups of G,(Il,) — equipped with its natural
Gy (ILy)-action [cf. Proposition 3.1, (ii), in the case of v € yhad),

(ii) (Mono-analytic Semi-simplifications) The functorial algorithm dis-
cussed in [IUTchl], Example 3.5, (iii), for constructing “(RS),” [cf. also [Ab-
sToplII], Proposition 5.8, (iii)] yields a functorial group-theoretic algorithm
in the topological group G, for constructing a topological monoid R>((G ) equipped
with a natural isomorphism

def

(\IICDS(GQ)/\I/CHS(GQ) . )rlf = RZO(GQ)

— where the superscript “x” denotes the submonoid of units; the superscript “rlf”
denotes the realification [which is isomorphic to R>o/ of the monoid in parentheses
[which is isomorphic to Q>¢] — and a distinguished element

Ui (Go)

cns

IOgGE(py) € Rzo (Gg)

— i.e., the element “logg(pg) ” of [IUTchI], Example 3.5, (iii). Write

s def

ens(G) Uens(Gy)™ X Rx0(Gy)

— which we shall think of as a sort of “semi-simplified version” of V., (Gy).
Also, just as in (i), we shall abbreviate notation that denotes a dependence on
“Gu(IL)” [e.g., a “Gy(Il,)” in parentheses| by means of notation that denotes a
dependence on ‘11, ”.

(iii) (Labels, ]Fl)“i—Symmetries, and Conjugate Synchronization) Let

t € LabCusp™ (Il ) L' LabCusp™ (B(IL,)°) [cf. [IUTch], Definition 6.1, (ii)]. In
the following, we shall use analogous conventions to the conventions introduced in
Corollary 3.5 concerning subscripted labels. Then if we think of the cuspidal
inertia groups C II, corresponding to t as subgroups of cuspidal inertia groups
of Hi [¢f. Remark 2.3.1, in the case of v € VP then the Ai—outer action of
IE‘>4i = Acor/AjE on I [cf. Corollary 2.4, (i), in the case ofv € V" induces
1somorphlsms between the pairs

GE(HQ)t ~ Wens (Hg)t

— consisting of a labeled ind-topological monoid equipped with the action of a
labeled topological group — for distinct ¢ € LabCuspi(Hg). We shall refer to

these isomorphisms as [F,'*-]symmetrizing isomorphisms [cf. Remark 3.5.2,
i the case of v € ybad/. These symmetrizing isomorphisms determine diagonal
submonoids

\chns( |IFZ [) C H ‘I[cns \t\ 3 \Ilcns( (]F* H \chns |t\
[t]E€[F:] |t|€F

of the respective product monoids compatible with the respective actions by sub-
scripted versions of Gy(Il,) [cf. the discussion of Corollary 3.5, (i), in the case of

v e yPad /, as well as an isomorphism of ind-topological monoids

WYens (Hg)O — Wens (HE) (]Fl*)
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compatible with the respective actions by subscripted versions of Gy (IL,) [cf. Corol-
lary 3.5, (iii), in the case of v € V"],

(iv) (Theta and Gaussian Monoids) Relative to the notational conventions
discussed at the end of (ii), let us write

\I[env(Hg) d:ef ‘;[lcns(Hy)X X {RZO : lognﬂ(py) : logng(@)}

— where the notation “log"%(p,) -lognﬂ(g) 7 is to be understood as a formal sym-
bol [cf. the discussion of [[UTchI], Example 3.3, (ii)] — and

def .
VL) % e (L), X [Bso- (o i log™(py).... )
< H qliis(ﬂg)j = H \IICHS(HQ)J'X X RZO(HQ)J'
JEFF JEFF
— where, by abuse of notation, we also write “j” for the natural number € {1,...,1*}

determined by an element j € F}. In particular, [cf. (i), (i), (iii)] we obtain a
functorial group-theoretic algorithm in the topological group 11, for construct-
ing the theta monoid V.., (Il,) and the Gaussian monoid V,,,(IL,), equipped

with their [evident] natural G, (11,)-actions and splittings, as well as the formal
evaluation isomorphism [cf. Corollary 3.5, (i), in the case of v € V"]

~

Verv(Il,)  —  Yeau(ILy)
log"®(py) - log""=(©) — ( g% log™e (py), .. )

— which restricts to the identity on the respective copies of “Wens(ILy)*” and is

compatible with the respective natural actions of G,(1l,) as well as with the nat-
ural splittings on the domain and codomain.

Proof.  The various assertions of Proposition 4.1 follow immediately from the
definitions and the references quoted in the statements of these assertions. ()

Remark 4.1.1.

(i) Proposition 4.1 may be thought of as a sort of “easy” formal general-
ization of much of the theory of §2, §3 — more precisely, the portion constituted
by Proposition 3.1 and Corollaries 2.4, 3.5 — to the case of v € V&°°4 V=" By
comparison to the corresponding portion of the theory of §2, §3, this generalization
is somewhat tautological and, for the most part, “vacuous”. As we shall see later,
the reason for considering this formal generalization to v € V&°°4 (V™" is that it
allows one to “globalize” the theory of §2, §3, i.e., by gluing together the theories
at v € VP and v € y&ood,

(ii) The symmetrizing isomorphisms of Proposition 4.1, (iii), constitute the
analogue at v € V&°°d (V"™ of the conjugate synchronization at v € yhad
discussed in Corollary 3.5, (i); Remark 3.5.2. In this context, it is perhaps most
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natural to think of the “copies of Gy(Il,) labeled by t € LabCusp™® (IL) " as the
quotients
D, /I,

— where [; is a cuspidal inertia group C 1I, corresponding to ¢; D; is the
corresponding decomposition group C I, [i.e., the normalizer, or, equivalently,
the commensurator, of I, in II, — cf., e.g., [AbsSect], Theorem 1.3, (ii)]; we think
of Dy;/I; as being equipped with the isomorphism D;/I; = G,(1L,) induced by the
natural surjection II, — G, (IL,).

(iii)) One may also formulate an easy tautological formal analogue at v €
VeI M V™" of the multiradiality and uniradiality assertions of Proposition 3.4,
Corollary 3.7 at v € V. For instance,

(a) the construction of the monoids We,s(Il,) [cf. Proposition 4.1, (i)] is
uniradial [cf. Proposition 3.4, (ii)], while

(b) the construction of the monoids ¥g (Il,), Weny(Ily), and W,y (I1,) [cf.

Proposition 4.1, (ii), (iv)], as well as of the isomorphism Wepy (IL,) = U gay (I1,)
[cf. Proposition 4.1, (iv)], is multiradial.

We leave the routine details to the reader. Ultimately, in the present series of
papers [cf., especially, the theory of [[UTchIII]], we shall be interested in a global
analogue of the theory of multiradiality and uniradiality developed in §1, §3 at
v € V”*. This global analogue will “specialize” to the theory of §1, §3 at v € VP24
and to the formal analogue just discussed [i.e., (a), (b)] at v € V&4 M ymor,

Proposition 4.2. (Frobenioid-theoretic Gaussian Monoids at Good
Nonarchimedean Primes) We continue to use the notation of Proposition 4.1.
Let T;ﬂ be a p,-adic Frobenioid that appears in a ©-Hodge theater THTO =
({Uz'—w}ﬂ@_/? T§" &) [ef. [IUTchI], Definition 3.6] — cf., for instance, the Frobe-
m’oz'd_“év = Cy” of [IUTchI], Example 3.8, (i); here, we assume [for simplicity] that
the base category of T]:-"U 15 equal to Btemp(THQ)O, and we denote by means of a 7

the varitous topological _groups associated to THE that correspond to the topological
groups associated to 11, in Proposition 4.1. Write

Gy('ly)  ~ Wig

for the ind-topological monoid Vir equipped with a continuous GE(THE)—action

determined, up to inner automor_phism [i.e., up to an automorphism arising
from an element of THE], by T;ﬂ [¢f. the construction of “Ve, 7 in Example 3.2,

(ii), in the case of v € V™, the discussion of “M.,” in [IUTchI], Definition 5.2,
(vi); the discussion of [AbsTopIIl], Remark 3.1.1] and

TC;2 m ‘IJT]_—L—

for the ind-topological monoid Wiz equipped with a continuous TGg-action deter-

mined, up to inner automorphism fi.e., up to an automorphism arising from an
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element of G, ], by the portion indexed by v of the F"-prime-strip {T}Z}EEY

determined by the ©-Hodge theater THT® [¢f. [TUTchl], Definition 3.6; [IUTchI],
Definition 5.2, (ii)].

(i) (Constant Monoids) There exists a unique G, ('IL,)-equivariant iso-

morphism of monoids [cf. Proposition 3.3, (ii), in the case of v € vPad. the
discussion of “4M, " in [IUTchI], Definition 5.2, (vi)]

Uiy 5 (L)

— ¢f. Remark 1.11.1, (i), (a); [AbsToplll], Proposition 3.2, (iv).

(i) (Mono-analytic Semi-simplifications) There ezists a unique 'G,-

equivariant 7% -orbit of isomorphisms of topological groups

~

Ui S Ta(TGy)”

— ¢f. Remark 1.11.1, (1), (b); [AbsToplll], Proposition 3.3, (ii) — as well as a
unique isomorphism of monoids

Ve (We /w5 wE (16

T ]-‘UF cns

that maps the distinguished element of ‘1115]__5 determined by the unique gen-

erator of \I/T]:b/\llx to the distinguished element of UK (TGE) determined by

T]—‘; cns
logTGﬂ(pE) € R>o(TGy) [ef. Proposition 4.1, (it)]. In particular, one may define
a “semi-simplified version” ?’*}5 def ‘~IJT><f5 X \I’I{Kf: of Ui Fii the isomorphisms

discussed above determine a natural poly-isomorphism of ind-topological monoids

cns

B S UGy

[cf. Proposition 4.1, (ii)] that is compatible with the natural splittings on the domain

and codomain. Write Wi, def Wi thus, it follows from the definitions [cf. also

—v

the unique isomorphism of_(i)] that we have a natural isomorphism [i.e., as opposed

to a poly-isomorphism!] \Ilis‘£ = \I/?S]_.vF

(iii) (Labels, F,'*-Symmetries, and Conjugate Synchronization) The
isomorphism of (i) determines, for each t € LabCuSpi(THE), a collection of com-
patible isomorphisms

~

(\IITZ )t — \I[cns(THE)t

—v

— which are well-defined up to composition with an inner automorphism of
fT1, which is independent of t € LabCusp™('L,) [cf. Corollary 3.6, (i), in the
case of v € ybad/ — as well as [le'i-]symmetrizing isomorphisms, induced by
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the TAf—outer action of F)'F = TA;"“/TAEjE on TH:; [cf. Corollary 2.4, (iii), in
the case of v € V"*], between the data indexed by distinct t € LabCuspi(THE).

Moreover, these symmetrizing isomorphisms determine [various diagonal sub-
monoids, as well as/ an isomorphism of ind-topological monoids

~

(Tir Jo  — (‘I’U:TU)W;?)

compatible with the respective actions by subscripted versions of Gy ('1L,) [cf. Corol-
lary 3.6, (iii), in the case of v € V"],

(iv) (Theta and Gaussian Monoids) Write

quF?? \I[]:gau (va)

for the monoids equipped with GE(THQ)—actions and natural splittings deter-
mined, respectively — via the isomorphisms of (i), (ii), and (iii) — by the monoids
Ueny (L), Veau(T1L,), Galois actions, and splittings of Proposition 4.1, (iv). Then
the definition of the various monoids involved, together with the formal evaluation
isomorphism of Proposition 4.1, (iv), gives rise to a collection of natural isomor-
phisms [cf. Corollary 3.6, (i), in the case of v € V"]

Uize Uenv(M,) 5 Ueo(IL,) 5 Vg (IF)

— which restrict to the identity or to the [restriction to “(—)*” of the] isomor-
phism of (i) [or its inverse] on the various copies of Ur , “Wens(T1L,)* 7 and are

—v

compatible with the various natural actions of Gy (TIL,) “and natural splittings.

Proof.  The various assertions of Proposition 4.2 follow immediately from the
definitions and the references quoted in the statements of these assertions. ()

Remark 4.2.1.

(i) In the case of v € V"*? treated in §3, we did not discuss an analogue of the
“mono-analytic semi-simplification” U (TG,) of Proposition 4.1, (ii). On the
other hand, one verifies immediately that one may define, in the case of v € V"4
— via the same group-theoretic algorithms as those applied in Proposition 4.1, (i),
(ii) — dnd-topological monoids U (TG,), R>o(TG,) equipped with natural TG, -
actions, a natural isomorphism [i.e., as in the first display of Proposition 4.1, (ii)],

a distinguished element logTGE(pE) € R>o(1G,), and a tautological splitting

U516y = 56" x Rxo("Gy)

[cf. Proposition 4.1, (ii)]. Moreover, if we write

def
\IICHS(HQ) = Wens (M? (HQ))
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— where the latter “¥.,s(—)” is as in Proposition 3.1, (ii) — then, by applying
the cyclotomic rigidity isomorphisms of Definition 1.1, (ii), and the discussion at
the beginning of Corollary 2.9, one obtains a functorial group-theoretic [i.e., in the
topological group IL,| II,-equivariant isomorphism

~

Uens(Ily)* = UG (Gu(11y))~

— cf. the discussion of “U* (—)” in the case of v € V&°° V"™ in Proposition
4.1, (ii). Finally, we observe that, relative to the above notation, one has analogues

of “W$., " and of Proposition 4.2, (i), (ii), in the case of v € VP24, We leave the

routine details to the reader.

(ii) Note that in the case of v € V&°°I ) V" the monoids Weyy (I1,), ¥gau(IL,)
of Proposition 4.1, (iv), are already divisible. Thus, it is natural, in the case of
v e VE°I N V™" to simply set

def
oo\I]env(Hg) == ‘I[env(Hg); ooqjgau (Hg) - \Pgau (Hg)

Uire B Wirer  SUr(E) O wx,

gau

('E)
— cf. the various monoids “,,W(—)” that appeared in the discussion of §3.

(iii) In the situation of (ii), if one regards the pairs Gy(Il,) ™ Weuy(ILy),
Gy(Ily) ~ Vgau(Ily), Gu(Ily) ™ ooWenv(lly), Gu(Ily) ™ oo¥gau(Ily) up to an
indeterminacy with respect to IL,-inner automorphisms, then one obtains data

which we shall denote by means of the notation

\Ijenv<Btemp(Hv)0)7 \I}gau(Btemp(Hv)O)a oo\Ijenv<Btemp(Hv)0), oo\IJgau(Btemp(Hv)O)

— i.e., since II, may only be reconstructed from lS’temP(l_Iy)0 up to an inner auto-
morphism indeterminacy [cf. the discussion of [ITUTchI], §0].

(iv) Suppose that v € V**1. Then the above discussion motivates the following
notational conventions. First, let us write

def def
Ueny () F ey MO(IL)),  Vgau(IL,) = Wgn, (MO(TL,))

def def
oo\IJenv(Hg) - oo\Ijenv<M?(Hy))7 oo\IJgau(Hg) - oo\Ijgau(M?(Hg))

— cf. (ii) above; the notation of Corollary 3.5, (ii). When these monoids equipped
with various topological group actions are considered only up to a Il,-inner au-
tomorphism indeterminacy, we shall denote the resulting data by means of the
notation

Weny (B"P(11,)°), Wgan(B*™P(I1,)°), oWeny (B P(I1,)Y), ooV gan(B*™P(11,)")

— cf. (iii) above.

Next, we consider [good] archimedean v € V¢ (C V&°°d).
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Proposition 4.3. (Aut-holomorphic-space-theoretic Gaussian Monoids
at Archimedean Primes) Let v € V¥ (C V&°°Y). Recall the Aut-holomorphic
orbispaces of [IUTchl], Example 3.4, (i),

def def def
i, =X - U =X - UF <SG

— s0 Gal(U, /UE) 2 Z/IZ [cf. the discussion preceding [IUTchl], Definition 1.1],
Gal(UF /Ucr) = F*E we shall apply the notation “An”, “Ag” of [IUTchI], E-
ample_3.4,_(z'), to these Aut-holomorphic orbispaces. Also, we shall write .AE C
An C Ag for the topological monoid of nonzero elements of absolute value <1 of
the complex archimedean field Ag [cf. the slightly different notation of [AbsToplIl],
Corollary 4.5, (i)]. Finally, we recall the object D' of the category “TM" 7 of split
topological monoids discussed in [IUTchl], E:mmpleT 8.4, (ii); we shall write D' (U,)

when we wish to regard DZ as an object algorithmically constructed from U,.

(i) (Constant Monoids) There is a functorial algorithm in the Aut-
holomorphic space U, for constructing the topological monoid

Veno(U,) = A5
— ¢f. [IUTchI], Example 3.4, (i); the discussion of ‘M, (—)” in [IUTchI], Defi-
nition 5.2, (vii); [AbsToplll], Definition 4.1, (i); [AbsToplll], Corollary 2.7, (e).
Moreover, if we write \IJCHS(DE) for the underlying topological monoid of DZ, then
we have a tautological isomorphism of topological monoids

~

Uens(Uy) = Weps(Djy (Uy))

[ef. [IUTchl], Example 3.4, (ii)] — which we shall use to identify these two
topological monoids.

(ii) (Mono-analytic Semi-simplifications) The functorial algorithm dis-
cussed in [IUTchl], Example 3.5, (iii), for constructing “(REO)E” [¢f. also [Ab-
sToplll], Proposition 5.8, (vi)] yields a functorial algorithm in the object D£

of TM"™ for constructing a topological monoid RZO(DZ ) equipped with a distin-
guished element

.
log”™ (py) € R>o(D})

— d.e., the element “logh (p,)” of [[UTchI], Example 3.5, (iii). Write

qlSS

cns

(DY) def Wens (D))" x Rso(D)

— where the superscript “x” denotes the submonoid of units — which we shall
think of as a sort of “semi-simplified version” of U.,s(D!). We shall abbreviate

notation that denotes a dependence on “D'(U,)” [e.g., a “DL(U,)” in parenthe-
ses| by means of notation that denotes a dgpendence on “UQ”._ Finally, there is a
functorial algorithm in the Aut-holomorphic space U, for constructing the natural
isomorphism [which arises immediately from the definitions/

TR (U) 9 Woa(Uy)/Tens(Uy)* 5 Rso(U,)

cns
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— ¢f. [IUTchl], Example 3.4, (i).

(iii) (Labels, Ffi-Symmetries, and Conjugate Synchronization) Let
te LabCuspi(Ug) [ef. [TUTchI], Definition 6.1, (iii)]. In the following, we shall
use analogous conventions to the conventions introduced in Corollary 3.5 concern-
ing subscripted labels. Then the action of F,'* = Gal(UF/U") on the var-

ous GaI(Ug/Ui)-orbits of cusps of U, [cf. the definition of “LabCuspi(—)” in
[IUTchl], Definition 6.1, (iii)] induces isomorphisms between the labeled topo-
logical monoids

\IIcns (Ug)t

o e + . . +
for distinct ¢ € LabCusp™(U,). We shall refer to these isomorphisms as [F,'*-

|symmetrizing isomorphisms [cf. Remark 3.5.2, in the case of v € ybad/. These
symmetrizing isomorphisms determine diagonal submonoids

\chns (Ug)(ﬂﬁ‘l [ - H \chns (Ug)\t\v qjcns(Ug> (]Fl*> - H \I[cns (Ug)|t|
tlElF| teF*

of the respective product monoids [cf. the discussion of Corollary 3.5, (i), in the
case of v € ybad/, as well as an isomorphism of topological monoids

\I!cns (UQ)O :> WCHS (UE) (Fl*)

[ef. Corollary 3.5, (iii), in the case of v € V"),

(iv) (Theta and Gaussian Monoids) Relative to the notational conventions
discussed in (ii), let us write

Veny(Uy) « Wens(Uy) ™ ¥ {RZO : log[uﬂ(pg) : 10gUz(@)}

— where the notation “logUE(pE)-logUE(g) " is to be understood as a formal symbol
[¢f. the discussion of [IUTchI], Example 3.4, (iii)] — and

def .
Veua(Uy)  & ans(U)s, ¥ {Boo- (o0 dog™(pa).. . )}
< H Uas(U); = H Wens (Ug);‘( X R>0(Uy);
JEFF JEFF
— where, by abuse of notation, we also write “j” for the natural number € {1,... 1%}

determined by an element j € F). In particular, [cf. (i), (i), (iii)] we obtain a
functorial algorithm in the Aut-holomorphic space U, for constructing the theta
monoid V.., (U,) and the Gaussian monoid V,,,(U,), equipped with their [ev-
ident] natural splittings, as well as the formal evaluation isomorphism /cf.
Corollary 3.5, (i), in the case of v € V"]

Ueny(Uy) = Ugau(Uy)

log(p,) Jog"+(©) > (.57 Tog"s (). )
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— which restricts to the identity on the respective copies of “\I/CHS(TUE)>< 7 and is
compatible with the natural splittings on the domain and codomain.

Proof.  The various assertions of Proposition 4.3 follow immediately from the
definitions and the references quoted in the statements of these assertions. ()

Remark 4.3.1. Analogous observations to the observations made in Remark
4.1.1, (i), (ii), (iii), may be made in the present case of v € V*°. We leave the rou-
tine details to the reader. In this context, we note that the cuspidal decomposition
groups that appear in the discussion of Remark 4.1.1, (ii), may be thought of as
corresponding to the “A,” that appear in [AbsToplIII], Corollary 2.7, (e) — i.e., in
the construction of Ay, — in the case of points p that belong to “sufficiently small”

neighborhoods of the cusps that correspond to an element t € LabCuspjE (Uy).

Proposition 4.4. (Frobenioid-theoretic Gaussian Monoids at Archime-
dean Primes) We continue to use the notation of Proposition 4.3. Let Tiv =
(TCQ, TDQ, Tmg) be the collection of data indexed by v € V¥ of a ©-Hodge theater
fHTe = ({Téw}wey, I§ ) [ef. [IUTchI], Definition 3.6; [IUTchl], Example
3.4, (i)]. Write T]:,L__ = (TC£, TDZ,TTg) for the data indexed by v [cf. the discussion
of [IUTchI], Example 3.4, (ii)] of the F"-prime-strip determined by the ©-Hodge

theater THT® [cf. [TUTchl], Definition 3.6; [[UTchl], Definition 5.2, (ii)]. Also, let

us write TUE def TD2 and TUE, TUT for the Aut-holomorphic orbispaces associated

to TU, that correspond to “[U::_}t 7, “Ejg’r . respectively [cf. the discussion of [ITUTchl],
Definition 6.1, (ii)].

(i) (Constant Monoids) In the notation of [IUTchl], Definition 3.6; [IUTchl],
Ezample 3.4, (i) [cf. also the discussion of “M,” in [IUTchI], Definition 5.2,
(viii)/, the Kummer structure

Tlig : \I/TE d:ef OD(TCE) — -ATDE

on the category TCQ, together with the tautological equality TD2 = T[U2 of Aut-
holomorphic spaces, determine a unique isomorphism

Tir 5 (U,

of topological monoids.

(ii) (Mono-analytic Semi-simplifications) Write W+ xr & OD(TC'E_) [cf.

[IUTchI], Example 3.4, (ii)]. Then there exists a unique {£1}-orbit of isomor-
phisms of topological groups

Ui 5 Vens(TD))”

as well as a unique isomorphism of monoids

ok def U, [T 5wl (DY) def R>o (DY)

T]-‘5 cns



130 SHINICHI MOCHIZUKI

that maps the distinguished element of \I/ITR]E”F determined by p, = e = 2.71828 . ..

[i.e., the element of the complex archimedean ﬁ_eld that gives rise to Vi r  whose nat-

ural logarithm is equal to 1] to the distinguished element of W% (TDE) determined by

cns

logTDZ (po) € RZO(TDZ) [cf. the first display of Proposition 4.3, (ii)]. In particular,

. . . def R . .
if we write Wi, = \IITXIF X \1115}.% for the “semi-simplified version” of Ui -,

then the former distinguished element, together with the poly-isomorphism of the
first display of the present (ii), determine a natural poly-isomorphism of topological
monoids

B S (D)

cns

[cf. Proposition 4.3, (ii)] that is compatible with the natural splittings on the domain

def

and codomain. Write W, = \Ili}g ; thus, it follows from the definitions that we

~

have a natural isomorphism W%, — Wi, .
=) A

—_—v

(iii) (Labels, F,'*-Symmetries, and Conjugate Synchronization) The
isomorphism of (i) determines, for each t € LabCuSpi(TUE), a collection of com-
patible isomorphisms

[cf. Corollary 3.6, (i), in the case of v € V"] as well as [F,'*-]symmetrizing
isomorphisms, induced by the action of Iﬁ‘ﬁi ~ Gal(fUE/TUST) on the vari-
ous Gal(TUE/TUf)—orbits of cusps of TU, [cf. the definition of “LabCuspi(—)” in
[IUTchI], Definition 6.1, (iii)], between the data indexed by distinct t € LabCusp™ (TU,).
Moreover, these symmetrizing isomorphisms determine [various diagonal sub- -
monoids, as well as/ an isomorphism of topological monoids

~

(Tizr Jo — (‘I’Tgv)@pf*)

[cf. Corollary 3.6, (iii), in the case of v € V™).

(iv) (Theta and Gaussian Monoids) Write

Vize, Vg, ()

for the topological monoids equipped with natural splittings determined, respec-
tively — via the isomorphisms of (i), (ii), and (iii) — by the monoids Weyy(1U,),
Uoou(TUy) and splittings of Proposition 4.3, (iv). Then the definition of the various
monoids involved, together with the formal evaluation isomorphism of Proposition
4.3, (), gives rise to a collection of natural isomorphisms [cf. Corollary 3.6,
(i), in the case of v € V"]

~ ~

Vize 5 Ue(Uy) 3 U (lU) 5 Ux (F)
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— which restrict to the identity or to the [restriction to “(—)*” of the] isomor-

phism of (i) [or its inverse] on the various copies of WYy , “Wens(TUy)* 7 and are

compatible with the various natural splittings.

Proof.  The various assertions of Proposition 4.4 follow immediately from the
definitions and the references quoted in the statements of these assertions. ()

Remark 4.4.1. 1In the case of v € V*°, one verifies immediately that one can
make a remark analogous to Remark 4.2.1, (ii).

Corollary 4.5. (Group-theoretic Monoids Associated to Base-©%¢!l-
Hodge Theaters) Let
+ ell
THTD—Gie“ _ (T@> Tﬁ T@T T& T'D@j:)
be a D-O*°'"Hodge theater [relative to the given initial ©-data — cf. [IUTchl],
Definition 6.4, (iii)] and
D= {ipg}yéy

a D-prime-strip; here, we assume [for simplicity/ that jFD2 = Btemp(iﬂg)o forv e
V"R, Also, we shall denote the D' -prime-strip associated to — i.e., the mono-
analyticization of — a D-prime-strip [cf. [IUTchl], Definition 4.1, (iv)] by means of
a superscript 4= and assume [for simplicity] that *D!, = Btemp(iGy)O forv e VU,

(i) (Constant Monoids) There is a functorial algorithm in the D-prime-
strip *® for constructing the assignment W.,s(*D) given by

VIO 5y o Wee(1D), & {Gg(ing) ~ \Ifcns(*ﬂy}

V¥ 35 p — \Ilcns(iQ)v def \I[cns(ipg)

— where the data in brackets “{—1}" is to be regarded as being well-defined only up
to a *II,-conjugacy indeterminacy — cf. Remark 4.2.1, (i), and Propositions

3.1, (ii); 4.1, (i); 4.3, ().

(ii) (Mono-analytic Semi-simplifications) There is a functorial algo-
rithm in the D" -prime-strip ¥ for constructing the assignment U _(*D") given
by

ynon Sv PSS (1@%)2 d:ef {iGE ~ PSS (iGg)}

cns cns

Vs e U (D7), € (D))
— where the data in brackets “{—}" is to be regarded as being well-defined only up to
a 1;Gy-conjugacy indeterminacy; each “U% (—)” is equipped with a splitting,
1.e., a direct product decomposition
U5 (07)y = H(D7)Y x Rxo(*D"),

cns cns
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as the product of the submonoid of units and a submonoid with no nontrivial units
[each of which is equipped with the action of a topological group when v € V"]
each submonoid Rzo(i@'_)2 is equipped with o distinguished element

Ik
log ® (o) € Rxo(*D"7)y
— ¢f. Remark 4.2.1, (i); Propositions 4.1, (ii), and 4.3, (ii). Here, if we regard *®"
as an object functorially constructed from *®, then there is a functorial algorithm
in the D-prime-strip D for constructing isomorphisms [of ind-topological abelian
groups, equipped with the action of a topological group when v € V"]

~

Vens((D)) 5 U5 (D7)

for each v € V — c¢f. Remark 4.2.1, (i); Propositions 4.1, (i), (ii), and 4.3,
(i), (ii). Finally, there is a functorial algorithm in the D" -prime-strip *D" for
constructing a Frobenioid

D (tph)
[ef. the Frobenioid “DY .7 of [[UTchI], Ezample 3.5, (iii)] isomorphic to the Frobe-
nioid “Ct-_ 7 of [IUTchI], Example 3.5, (i), equipped with a bijection

Prime(D" (197)) 5 Vv

— where we write “Prime(—)" for the set of primes associated to the divisor
monoid of the Frobenioid in parentheses [cf. the discussion of [[UTchl], Exam-
ple 3.5, (i)] — and, for each v € V, an isomorphism of topological monoids
3:,01)w’2 : Opi (1m0 — R>o(*D"),, where we write “Dpi i+, for the submonoid
[isomorphic to Rq] of the divisor monoid of D' (¥D") associated to v [cf. the iso-
morphism “pP” of [IUTchI], Example 3.5, (iii)].

(iii) (Labels, Ffi-Symmetries, and Conjugate Synchronization) Write

~

f¢, : LabCusp®(f®.) 5 T

for the bijection ¢4 o TC(?e“ o (TC(?i)_l arising from the bijections discussed in
[IUTchI], Proposition 6.5, (i), (ii), (iii). Lett € LabCuspi(TCDg. In the following,
we shall use analogous conventions to the conventions introduced in Corollary 3.5
concerning subscripted labels. Then the various local Ffi-actions discussed
in Corollary 3.5, (i), and Propositions 4.1, (iii); 4.3, (iii), induce isomorphisms
between the labeled data

\Ilcns(T©>)t

[ef. (i)] for distinct ¢ € LabCusp™® (T®,). We shall refer to these isomorphisms
as [F fi-]symmetrizing isomorphisms. These symmetrizing isomorphisms are
compatible, relative to T¢., with the Ffi-symmetry of the associated D-O°"-
bridge [cf. [IUTchI], Proposition 6.8, (i)] and determine diagonal submonoids

\I[cns(T:D>)<|IFl|) C H \chns(T©>)\t\; \I]cns(T©>)<Fl*> - H \I!cns(T@>)|t|
tle | (t|eF*
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— where the “C’s” denote the various local inclusions of diagonal submonoids of
Corollary 3.5, (i), and Propositions 4.1, (iii); 4.3, (iii) — as well as an isomor-
phism

\I’CHS(T©>)0 = lIICHS(TQD>)<IF?6>
constituted by the various corresponding local isomorphisms of Corollary 3.5, (iii),
and Propositions 4.1, (iii); 4.3, (iii).

(iv) (Local Theta and Gaussian Monoids) There is a functorial algo-
rithm in the D-prime-strip 1D for constructing assignments Wony (10), Ugan (1D, ),
oo\Ijenv(T©>); oo\llgau(T©>)

Vou = Ten(1Dp )y & Ueny (D) Vo u o Upau(MD,), €
v

— where the various local data are equipped with actions by topological groups
when v € V'" and splittings [for all v € V], as described in detail in Corollary
3.5, (ii), (iii), and Propositions 4.1, (iv); 4.3, (iv) [cf. also Remarks 4.2.1, (ii),
(1), (iv); 4.4.1] — as well as compatible evaluation isomorphisms

~

\I[enV(T©>) — \I’gau(T©>); oo\Ijenv<T®>) :> oo\llgau(T©>)
as described in detail in Corollary 3.5, (ii), and Propositions 4.1, (wv); 4.3, (iv).
(v) (Global Realified Theta and Gaussian Frobenioids) There is a func-

torial algorithm in the D™ -prime-strip T@: for constructing a Frobenioid

DH—

env

("27)

— namely, as a copy of the Frobenioid “D" (D))" of (ii) above, multiplied by a

formal symbol “logw;(g) ” [cf. the constructions of Propositions 4.1, (i), and
4.3, (v), as well as of [IUTchI], Example 3.5, (ii)] — isomorphic to the Frobenioid
‘CF 47 of [TUTchI], Example 3.5, (i), equipped with a bijection Prime(D!,  (1DL))
5V [ef. (i) above] and, for each v € V, an isomorphism of topological
monoids

~

(p'Dll— (T©:)7y — \IjenV(Tgl;)E

— where we write “@DLFHV(T@:LQ” for the submonoid [isomorphic to R>o] of the
divisor monoid of DL (1DL) associated to v; we write Veny (TOL)E for the data

env
[which, as is easily verified, is completely determined by T@: — ¢f. Propositions
4.1, (i), (), and 4.3, (ii), (v), as well as the evident analogues of these results
at bad primes, i.e., in the spirit of Remark 4.2.1, (i)] obtained from \I/env(753>)2
[cf. (iv) above] by replacing the ind-topological monoid portion of Weny (1D, by the
realification of the quotient of this ind-topological monoid by its submonoid of units.
There is a functorial algorithm in the D" -prime-strip T@: for constructing a
subcategory, equipped with a Frobenioid structure,
D (®0) ¢ [[ P9,

JEF,
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— [¢f. Remark 4.5.2, (i), below concerning the subscript “j’s”] whose divisor and
rational function monoids are determined [relative to the divisor and rational func-
tion monoids of each factor in the product category of the display] by the “vector of

ratios”
(f)

whose components are indexed by j € IFZ* [¢ef.  Remark 4.5.4 below; the nota-
tional conventions of Propositions 4.1, (iv); 4.3, (iv)] — equipped with a bijection
Prime(Dgau(TQZ)) =V [cf. (i) above] and, for each v € V, an isomorphism of
topological monoids

(pan— (TQ';),Q :> \I!gau(j‘gl;_)ﬁ

gau

— where we write {{ép\gkau(jv@;)’y ” for the submonoid [isomorphic to R>q] of the

divisor monoid of Dy,,("DT) associated to v; we write \Ilgau(f’i):)ﬂi for the data

[which, as is easily verified, is completely determined by T@i — cf. Propositions
4.1, (i1), (iv), and 4.3, (ii), (iv), as well as the evident analogues of these results
at bad primes, i.e., in the spirit of Remark 4.2.1, (i)] obtained from Vg, (1D ),
[¢f. (iv) above] by replacing the ind-topological monoid portion of \I/gau(JfZL)2 by
the realification of the quotient of this ind-topological monoid by its submonoid of
units. Finally, there is a functorial algorithm in the D" -prime-strip T@'; for
constructing a global formal evaluation isomorphism of Frobenioids
Di(0f) 5 ph(ieh)

which is compatible, relative to the bijections and local isomorphisms of
topological monoids associated to these Frobenioids, with the local evaluation
isomorphisms of (iv) above.

Proof. The various assertions of Corollary 4.5 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 4.5.1.

(1) Just as was done in Definition 3.8, one may interpret the various collections
of monoids constructed in Corollary 4.5, (i), (iv) as collections of Frobenioids. That
is to say, the collection of monoids discussed in Corollary 4.5, (i), gives rise to an
F-prime-strip, hence also to an associated F' -prime-strip. In a similar vein, the
theta and Gaussian monoids of Corollary 4.5, (iv), give rise to a well-defined F' -
prime-strip — up to an indeterminacy, at the v € V"3 [corresponding to the
various 2[-th roots of the square of the theta function and “value-profiles”], relative
to automorphisms of the split Frobenioid at such v € VP24 that induce the identity
automorphism on the subcategory of isometries [cf. [Frdl], Theorem 5.1, (iii)] of
the underlying category of the split Frobenioid — cf. Remark 4.10.1 below. On
the other hand, as discussed in Remark 3.8.1, this Frobenioid-theoretic formulation
is — by comparison to the original monoid-theoretic formulation — technically
ill-suited to discussions of conjugate synchronization.
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(ii) On the other hand, such technical complications do not occur if one re-
stricts oneself to discussions of realifications — cf., e.g., the objects “Rzo(i’DF)Q”,
“D (D) discussed in Corollary 4.5, (ii). In general, Frobenioid-theoretic formu-
lations are typically technically easier to work with than monoid-theoretic formula-
tions when the associated “Picard groups Pice(—)” [cf. [Frdl], Theorem 5.1; [FrdI],
Theorem 6.4, (i); [IUTchl], Remark 3.1.5] contain nontorsion elements — i.e., at
a more intuitive level, when there is a nontrivial notion of the “degree” of a line
bundle. Examples of such Frobenioids include global arithmetic Frobenioids such as
the Frobenioid “D'" (*D")” of Corollary 4.5, (ii), as well as the tempered Frobenioids
that appeared in Propositions 3.3 and 3.4; Corollary 3.6.

Remark 4.5.2.

(i) One may also construct symmetrizing isomorphisms as in Corollary
4.5, (iii), for versions labeled by t € LabCuspi(T®>) of the semi-simplifications
\Ilifls(TﬁDg), equipped with splittings and distinguished elements, and the global re-
alified Frobenioids D'F(T@;), equipped with bijections and local isomorphisms of
topological monoids, as discussed in Corollary 4.5, (iii). We leave the routine de-

tails to the reader.

(ii) Just as was discussed in Remark 3.5.3, one may also consider “multi-
basepoint” versions of the symmetrizing isomorphisms of Corollary 4.5, (iii) [cf.
also the discussion of (i) above] — i.e., by passing to D-0°"'-bridges or [holomorphic
or mono-analytic] capsules or processions [cf. [IUTchl], Proposition 6.8, (i), (ii),
(iii); [IUTchl], Proposition 6.9, (i), (ii)]. We leave the routine details to the reader.

Remark 4.5.3. Before proceeding, we pause to review the significance of the
]Fl”i-symmetry that gives rise to the symmetrizing isomorphisms of Corollary

4.5, (iii) [cf. Remark 3.5.2].

(i) First, we recall that the crucial conjugate synchronization established
in Corollaries 3.5, (i); 4.5, (iii) [cf. also Propositions 4.1, (iii); 4.3, (iii)], is possible
in the case of the Ffi—symmetry — but not in the case of the F}*-symmetry! —
precisely because of the connectedness, at each v € V, of the local components
involved — cf. the discussion of Remarks 2.6.1, (i); 2.6.2, (i); 3.5.2, (ii), as well
as [IUTchI], Remark 6.12.4, (i), (ii). Here, we note in passing that although these
remarks essentially only concern v € V°*! similar [but, in some sense, easier!]
remarks hold at v € V&°4. A related property of the Ffi—symmetry — which,
again, is not satisfied by the F;*-symmetry! — is the “geometric” nature of the
automorphisms that give rise to this symmetry [cf. Remark 3.5.2, (iii)].

(ii) One way to understand the significance of the “single basepoint” sym-
metrizing isomorphisms arising from the Ffi—symmetry is to compare these sym-
metrizing isomorphisms with the symmetrizing isomorphisms that arise from the
various “multi-basepoint” [i.e., “multi-connected component”] symmetries discussed
in Remarks 3.5.3; 4.5.2, (ii). That is to say:

(a) By comparison to the symmetries that arise from mono-analytic cap-
sules/processions: the ring structure — i.e., “arithmetic holomorphic
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structure” — that remains intact in the case of the symmetrizing isomor-
phisms of Corollary 4.5, (iii), will play an essential role in the theory of
the log-wall [cf. the discussion of Remark 3.6.4, (i)], which we shall apply
in [TUTchIII].

(b) By comparison to the symmetries that arise from holomorphic cap-
sules/processions: the “single basepoint” that remains intact in the case
of the symmetrizing isomorphisms of Corollary 4.5, (iii), is used not only
to establish conjugate synchronization, but also to maintain a bijective
link with the set of labels in “LabCusp™(—)” [cf. the discussion of Re-
mark 3.5.2]. Both conjugate synchronization and the bijective link with
the set of labels play crucial roles in the theory of Galois-theoretic theta
evaluation developed in §3 [cf. the various remarks following Corollaries
3.5, 3.6; Remark 3.8.3].

(¢) By comparison to the symmetries that arise from the Ffi—symmetries of
D-0¢°_bridges: Although the structure of a D-0©°"-bridge allows one to
maintain a bijective link with the set of labels in “LabCusp™(—)” [cf. the
discussion of [IUTchI|, Remark 4.9.2, (i); [[UTchl], Remark 6.12.4, (i)],
the multi-basepoint nature of the Ffi-symmetries of D-0°-bridges does
not allow one to establish conjugate synchronization [cf. (b)].

(iii) Note that in order to glue together the various local Ffi—symmetm’es of
Corollary 3.5, (i), and Propositions 4.1, (iii); 4.3, (iii), so as to obtain the global
Ffi-symmetry of Corollary 4.5, (iii), it is necessary to make use of the global
portion “TDOF" of the D-©F°"_Hodge theater under consideration — i.e., by ap-
plying the theory of [IUTchl], Proposition 6.5 [cf. also [IUTchI], Remark 6.12.4,
(iii)]. That is to say, the global portion of the D-©T!'-Hodge theater under con-
sideration plays, in particular, the role of

synchronizing the +-indeterminacies at each v € V.

Indeed, in some sense, this is precisely the content of [[UTchl], Proposition 6.5. In
particular, the essential role played in this context by “D®*” in synchronizing,
or coordinating, the various local +-indeterminacies is one important underlying
cause for the profinite conjugacy indeterminacies — i.e., “A 7-conjugacy in-
determinacies — that occur in Corollaries 2.4, 2.5 — cf. the discussion of Remark
2.5.2. Thus, in summary, these local +-indeterminacies constitute one important
reason for the need to apply the “complements on tempered coverings” developed
in [IUTchI], §2, in the proof of Corollary 2.4 of the present paper.

Remark 4.5.4. In the situation of Corollary 4.5, (v), we remark that the Frobe-
nioid D'gkau(TD';) may be thought of as a sort of “weighted diagonal”, relative to
the weights determined by the vector “(...,j2-,...)”. That is to say, at a more
concrete level, the divisor monoid (respectively, rational function monoid) of this

Frobenioid consists of elements of the form

(12 ¢, 2%2-6,..., j%>-¢,...) (respectively, (1*- 8, 2%-5,..., j*-f,...))

— where ¢ (respectively, ) is an element of the divisor monoid (respectively,
rational function monoid) associated to the Frobenioid D' (D).
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Corollary 4.6. (Frobenioid-theoretic Monoids Associated to ©*°!-
Hodge Theaters) Let
T’ll):@ti + ecll

ell w
EYace = (13, §r — D%

be a ©F°"-Hodge theater [relative to the given initial ©-data — cf. [IUTch],
Definition 6.11, (iii)] and

13 = {i}—y}yey
an F-prime-strip; here, we assume [for simplicity] that the D-©T'-Hodge theater
associated to THT@ieH [ef. [IUTchl], Definition 6.11, (iii)] is the D-©%!-Hodge

theater THTD'@iEH of Corollary 4.5, and that the D-prime-strip associated to *F
[ef. [TUTchI], Remark 5.2.1, (i)] is the D-prime-strip *® of Corollary 4.5. Also, we
shall denote the F'©-prime-strip associated to — i.e., the mono-analyticization of
— an F-prime-strip [cf. [IUTchl], Definition 5.2.1, (ii)] by means of a superscript
(1_ 77‘

(i) (Constant Monoids) There is a functorial algorithm in the F-prime-
strip ¥F for constructing the assignment \Ifcns(iS) given by

ynon 2V \I’cns(ig)g d:ef {Gg(iﬂg) N \I’i}‘z}

def

yarcay = qjcnsG&)g — \I[i]-“v

— where the data in brackets “{—1}" is to be regarded as being well-defined only up
to a *Il,-conjugacy indeterminacy — cf. [IUTchI], Definition 5.2, (i); Propo-
sitions 3.3, (ii) [i.e., where we take ‘4C2” to be i]-"E/; 4.2, (i); 4.4, (i). We shall
write

Vens((F) 5 Wens('D)
for the collection of isomorphisms of data indexed by v € V determined by the
“Kummer-theoretic” isomorphisms of Propositions 3.3, (ii) [i.e., where we take
“4C,” to be *F, and apply the conventions discussed in Remark 4.2.1., (i); cf. also

Proposition 1.3, (i), (iii)]; 4.2, (i); 4.4, ().

(ii) (Mono-analytic Semi-simplifications) There is a functorial algo-

rithm in the F" -prime-strip *§" for constructing the assignment 5 (") given
by

def
Voo o (), X

— where we regard each “VUi%. 7 as being equipped with its natural splitting and,

when v € V*", its associated distinguished element; for v € V", “U§. 7 is

to be regarded as being well-defined only up to a TGE-conjugacy indetermi;lacy
— ¢f. Remark 4.2.1, (i), and Propositions 4.2, (ii); 4.4, (ii). We shall write
(D7)

(ig}—) :> PSS

cns

q;SS

cns

for the collection of isomorphisms of data indexed by v € V determined by the
“Kummer-theoretic” isomorphisms of Propositions 4.2, (ii); 4.4, (ii) — cf. also
Remark 4.2.1, (i); Corollary 4.5, (ii). Now recall the F'"" -prime-strip

B = (!¢", Prime(*c¢") 5V, 1T, {fputuev)
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associated to *§ in [IUTchI], Remark 5.2.1, (ii). Then, in the notation of Corollary
4.5, (i1); [IUTchl], Remark 5.2.1, (ii), there is an isomorphism of Frobenioids

T ()
that is uniquely determined by the condition that it be compatible with the
respective bijections Prime(—) = V and local isomorphisms of topologi-
cal monoids for each v € V, relative to the above collection of isomorphisms
Uss () S U _(3D"). Finally, there is a functorial algorithm for construct-
ing from the F" -prime-strip *§" [recalled above] the isomorphism *C'™ = DIF (+DF)
[of the preceding display] and the [necessarily compatible] collection of isomorphisms
wss (F55) S Uss _(*D") [ef. Remark 4.6.1 below].

cns cns

(iii) (Labels, Ffi-Symmetries, and Conjugate Synchronization) In the
notation of Corollary 4.5, (iii), the collection of isomorphisms of (i) determines,
for each t € LabCuspi(T©>), a collection of compatible isomorphisms

~

\chns(Tg>-)t — \Pcns(TD>—)t

— where the TIl,-conjugacy indeterminacy at each v € V™" [cf. (i)] is in-
dependent of t € LabCusp™ (1D,.) — as well as [F*-]symmetrizing isomor-
phisms, induced by the various local Ffi-actions discussed in Corollary 3.6,
(i), and Propositions 4.2, (iii); 4.4, (i), between the data indexed by distinct
S LabCuspi(T©>). Moreover, these symmetrizing isomorphisms are compat-
ible, relative to T¢s [cf. Corollary 4.5, ()], with the Ffi-symmetry of the
associated D-©°M-bridge [cf. [[UTchI], Proposition 6.8, (i)] and determine [various
diagonal submonoids, as well as/ an isomorphism

\I[cns(TS:>-)0 :> \I/cns(T{§>-)<Fl*>

constituted by the various corresponding local isomorphisms of Corollary 3.6, (iii),
and Propositions 4.2, (ii1); 4.4, (11i).

(iv) (Local Theta and Gaussian Monoids) Let

ng

(g, — 5= - TUT®)

be a O-bridge [relative to the given initial ©-data — cf. [IUTchl], Definition
5.5, (ii)] which is glued to the ©F-bridge associated to the ©F'-Hodge theater

THT@ieH via the functorial algorithm of [IUTchI], Proposition 6.7 [so J = T*]
— ¢f. the discussion of [IUTchl], Remark 6.12.2, (i). Then there is a functo-
rial algorithm in the ©-bridge of the above display, equipped with its gluing to

the ©*-bridge associated to T”HTQieH, for constructing assignments W (YHT®),

env

Uz (HT®), Ur, ((HT®), «Vr, (1HT®) [where we make a slight abuse of
the notation ““HT® 7]

« Uire; Vou — Vg (MHT®), L (*E,)

gau

Vov — Ve (1HT®),

Vouv = OO\II]:env (TH’]‘@))Q d:ef oo\IJT]-‘g)

Vouv = Ur (THT@)E(Efoo‘I’fgau(Tév)

gau
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— where the various local data are equipped with actions by topological groups
when v € V™" and splittings [for all v € V], as described in detail in Corollary
3.6, (ii), (iii), and Propositions 4.2, (iv); 4.4, (iv) [cf. also Remarks 4.2.1, (ii);
4.4.1] — as well as compatible evaluation isomorphisms

~

\D}—env(THT@) :) \IjenV(T©>) — lIJgau('i‘©>) :> \I]}—gau (THTG)?

~ ~ ~

oo\:[l]-'en\, (THT@) — oo\I/env(T©>) — oo\IIgau(T®>) — oo\IJ}'gau (THT@)

as described in detail in Corollary 3.6, (ii) [cf. also Remark 4.2.1, (iv); the left-hand
portion of the first display of Proposition 3.4, (i); the first display of Proposition
3.7, (i)], and Propositions 4.2, (wv); 4.4, () [cf. also Corollary 4.5, (iv)].

(v) (Global Realified Theta and Gaussian Frobenioids) By applying —
i.e., in the fashion of the constructions of Propositions 4.2, (iv); 4.4, (iv) — both
labeled [as in (iii) — cf. Remark 4.6.2, (ii), below] and non-labeled versions of the

~

isomorphism “4C"™ 5 D"(*D")” of (ii) to the global Frobenioids “D!,.,(T1DL)”,

env

Dy (1D0) 7 constructed in Corollary 4.5, (v), one obtains a functorial algo-

rithm in the ©-bridge of the first display of (iv), equipped with its gluing to the
+e
O©*-bridge associated to THT® H, for constructing Frobenioids

Ch (THT®), CL.(THT®)

— where again we make a slight abuse of the notation ““HT® ”; we note in passing
that the construction of “CL;V(T”HT@) 7 4s essentially similar to the construction of

‘Ch.” in [IUTchI], Example 3.5, (ii) — together with bijections Prime(Cl,  (FHT®))
=V, Prime(C,, (FH7T°)) 3 V and isomorphisms of topological monoids

gau

~

~ e ©

¢c‘el_nv(TH7—@)7y — \IJ‘FGUV(THT )5’ ®C,‘g)_au(THT@)7y — \Ilfgau(THT )E
[cf. the notational conventions of Corollary 4.5, (v)] for each v € V, as well as
evaluation isomorphisms

~ ~

Cone("HT®) 5 DL (DY) 5 Dpy(05) 5 Cu((HT®)

— d.e., in the fashion of the constructions of Propositions 4.2, (w); 4.4, (iv), by
“conjugating” the evaluation isomorphism of Corollary 4.5, (v), by the isomorphism
4ot 5 DY (EDN)” of (ii) — which are compatible, relative to the local iso-
morphisms of topological monoids for each v € V discussed above, with the

local evaluation isomorphisms of (iv).

Proof. The various assertions of Corollary 4.6 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 4.6.1.  One verifies easily that, in the case of v € V™", the poly-
isomorphism WS, = U (TG,) of Proposition 4.2, (i) [cf. also Remark 4.2.1,

cns

()], may be reconstructed algorithmically from T].“£ . By contrast, in the case of
v € V¥ it is not possible to reconstruct algorithmically [the non-unit portion of]
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the corresponding poly-isomorphism W5, = WS <D£ ) of Proposition 4.4, (ii), from

TFI. That is to say, in the case of v € ya_“, the distinguished element of W

Er li.e.,

of \IJ]}Q]__F] is not preserved by arbitrary automorphisms of TFL__ . On the other_hand,

in the context of Corollary 4.6, (ii), if one reconstructs both ¥ _(*g7) = U (D)

cns

~

and ¥C" 5 D"(*D") in a compatible fashion, then the distinguished elements at
v € V¥ may be computed [in the evident fashion] from the distinguished elements
at v € V™" together with the structure of the global Frobenioids *C't, DV (*D"),
i.e., by thinking of these global Frobenioids as “devices for currency exchange”
between the various “local currencies” constituted by the divisor monoids at the

various v € V [cf. [IUTchl], Remark 3.5.1, (ii)].

Remark 4.6.2.

(i) Similar observations to the observations made in Remark 4.5.1, (i), con-
cerning the content of Corollary 4.5, (i), (iv), may be made in the case of Corollary
4.6, (i), (iv).

(ii) Similar observations to the observations made in Remark 4.5.2, (i), (ii),
concerning the content of Corollary 4.5, (iii), may be made in the case of Corollary
4.6, (ii).

Corollary 4.7. (Group-theoretic Monoids Associated to Base-ONF-
Hodge Theaters) Let

fyrP-ONF — (ipe = fp, X ip.)

be a D-ONF-Hodge theater [cf. [IUTchI], Definition 4.6, (iii)] which is glued
to the D-0*°l_.Hodge theater T’HTD'@ieH of Corollary 4.5 via the functorial al-
gorithm of [IUTchI], Proposition 6.7 [so J = T*] — cf. the discussion of [IUTchl],
Remark 6.12.2, (i), (ii).

(i) (Non-realified Global Structures) There is a functorial algorithm
in the category TD® for constructing the morphism

Tpe _ tp®

[i.e., a “category-theoretic version” of the natural morphism of hyperbolic orbicurves
Cyx — Cp,..J] of [ITUTchl], Example 5.1, (i), the monoid/field /pseudo-monoid
equipped with natural 7 (TD®)- /(73 (TD®) =)7L (1D®)-actions

m(fD®) ~ M®(1D®), m(ID®) ~ M (D®), ==(iD®) ~ M2, (TD°)

— which are well-defined up to m (T1D®)- /7 (1D®)-conjugacy indetermina-
cies — of [IUTchl], Example 5.1, (i), the submonoids/subfield /subset of 7 (TD®)-
ot/ rsol (1 p®)_ pr-sol (1D invariants

®
Mmod

(‘'D®) < (@D ~) M

sol

(TD@) C M®(TD@),
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M., ((D®) < M™M°(ip®), M2('Dp®) < M® (ID°)

[cf. [IUTchI], Example 5.1, (i)], the [“corresponding”] Frobenioids

JT_'®

mod

(TD@) C }“@(TD@) . }"@(TD@)

— where we write F&_,(1D®), FO(ID®) for the categories “TFL 7, “TF” ob-
tained in [IUTchI], Example 5.1, (iii), by taking the ““F®” of loc. cit. to be
F®(D®), and, by abuse of notation, we regard the Frobenioid F°_,(TD®) as being
equipped with a natural bijection

~

Prime(F® (ID®)) 5 V
[cf. the final portion of [IUTchl], Example 5.1, (v)] — of [IUTchl], Example 5.1,
(i), (iit), and the natural realification functor

f@

mod

('D?) = Fra(D®)

mod

[ef. [TUTchI], Example 5.1, (vii); [Frdl], Proposition 5.3].

(ii) (Labels and F;*-Symmetry) Recall the bijection
¢y : LabCusp("D®) 5 J (5 Ff)

of [[UTchl], Proposition 4.7, (iii). In the following, we shall use analogous conven-
tions to the conventions applied in Corollary 4.5 concerning subscripted labels.
Let j € LabCusp(TD®). Then there is a functorial algorithm in the category
D@ for constructing an F-prime-strip

FO(DO);

— which is well-defined up to isomorphism — from F®(1D®) [cf. [IUTchI],
Ezxample 5.4, (iv), where we take the “6” of loc. cit. to be j|. Moreover, the natural
poly-action of F on TD® [cf. [IUTchl], Example 4.3, (iv)] induces isomorphisms
between the labeled data

—®
F@(TD©>|j7 Mgod(TD(@)j’ Mmod(TD@D)j’

{r=l('D®) ~ Mg, ('D®)};, {n7!('D®) ~ MZ,.('D?)};,

f®

mod

('p®); — FEX(D®);

mod

[ef. (i)] for distinct j € LabCusp(TD®) [cf. Remark 4.7.2 below]. We shall refer
to these isomorphisms as [F; -]symmetrizing isomorphisms. Here, the objects
equipped with T2 (TD®) (= 7L (1D®))-actions are to be regarded as being subject
to independent ﬂat/ K'SOI(TD@)-conjugacy indeterminacies for distinct j, to-
gether with a single (7% (TD®) —)7r4°1(TD®)-conjugacy indeterminacy that
is independent of j [cf. the discussion of the final portion of [IUTchI], Exam-

ple 5.1, (i)]. These symmetrizing isomorphisms are compatible, relative to Ty,
with the F)*-symmetry of the associated D-NF-bridge [cf. [IUTchI], Proposition
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4.9, (i)] and determine diagonal F-prime-strips/submonoids/subrings/sub-
pseudo-monoids [equipped with a group action subject to conjugacy indetermina-
cies as described above//subcategories [cf. Remark 4.7.2 below]

(_)<Ff€> - H (—);

JEF,

— where “(—)..” may be taken to be FO(1D®)| . [cf. the discussion of [[UTchI],
Ezample 5.4, (i)], M2,q(1D®)_, Mpoq("D®) , {7 (1D®) ~ ME,(1D®)}

mod e
{mp=ol(fD®) A MO, (1D9)}., F2 ,(D®) ., or FEX(1D®). . [ef. the discus-
sion of [IUTchl], Example 5.1, (vii)]. [Here, the notion of a “diagonal F-prime-
strip”, of a “diagonal sub-pseudo-monoid equipped with a group action subject to
conjugacy indeterminacies as described above”, or of a “diagonal subcategory” is
to be understood in a purely formal sense, i.e., as a purely formal notational

shorthand for the Fl* -symmetrizing isomorphisms discussed above.]

(i4i) (Localization Functors and Realified Global Structures) Let j €
LabCusp("D®). For simplicity, write 1D; = {TDEJ_ boev, 105 = {TDZj }vev for
the D-, D" -prime-strips associated [cf. [IUTchI], Definition 4.1, (iv); [TUTchI],
Remark 5.2.1, (i)] to the F-prime-strip F©(1D®)|;. Then there is a functorial
algorithm in the category 'D® for constructing [1-]compatible collections of “lo-
calization” functors/poly-morphisms [up to isomorphism/

.F®

mod

('D®);, —  Fo('D9);, FEL(DO); = (FO(DO),)"

mod

{m(D%) A M2,(D)}; = M_w(Dy) € Mowo('Dy)}

— where the superscript “R” denotes the realification — as in the discussion
of [IUTchI], Example 5.4, (iv), (vi) [cf. also [IUTchl], Definition 5.2, (v), (vii)],
together with a natural isomorphism of Frobenioids

pr(of)y 5 FE (D),

[cf. the notation of Corollary 4.5, (ii)] and, for eachv € V, a natural isomorphism
of topological monoids

RZO(TQ;)E = U(ropo);)Re

— where “V(ro(ipoe),)r., denotes the divisor monoid associated to the Frobe-
nioid that constitutes (F©(TD®)|;)® at v — which are compatible [cf. Remark
4.7.1 below] with the respective bijections involving “Prime(—)” and the respective
local isomorphisms of topological monoids [cf. the arrow fffd(TD@)j —
(FO(ID®)|;)® discussed above; Corollary 4.5, (ii)]. Finally, all of these structures
are compatible with the respective F; -symmetrizing isomorphisms [cf. (ii)].

Proof. The various assertions of Corollary 4.7 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()
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Remark 4.7.1. Similar observations to the observations made in Remark 4.5.2,
(i), (ii), concerning the F ;"i—symmetrizing isomorphisms of Corollary 4.5, (iii), may
be made in the case of the F;*-symmetrizing isomorphisms of Corollary 4.7, (ii).

Remark 4.7.2. In the context of Corollary 4.7, (ii), we recall from Remarks
3.5.2, (iii); 4.5.3, (i), that unlike the case with Ffi—symmetry, in the case of F}*-
symmetry, it is not possible to establish the sort of conjugate synchronization
given in Corollary 4.5, (iii), since the F}*-symmetry involves — i.e., more precisely,
arises from conjugation by elements with nontrivial image in — the arithmetic
portion [i.e., the absolute Galois group of the base field] of the global arithmetic
fundamental groups involved [cf. the discussion of how “G-conjugacy indeter-
minacies give rise to Gy-conjugacy indeterminacies” in Remark 2.5.2, (iii)]. It is
precisely this state of affairs that obliges us, in Corollary 4.7, (ii), to work with

(a) F-prime-strips, as opposed to the corresponding ind-topological monoids
with Galois actions as in Corollary 4.5, (iii), and with

(b) the various objects introduced in Corollary 4.7, (i), that are equipped
with sub-/super-scripts
((mod”, “80177, “H—SO]”, OI'

“ 9
OOK:

— corresponding to “Fuoq”, “Fyo”, “mi™°(—)", or “,k-coric rational
functions” — or [as in the case of “W]{at/ ”'SOI(—)”] are only defined up
to certain conjugacy indeterminacies, as opposed to the objects not
equipped with such subscripts or not subject to such conjugacy indeter-

minacies.

That is to say, both (a) and (b) allow one to ignore the various independent — i.e.,
non-synchronizable — conjugacy indeterminacies that occur at the various distinct
labels as a consequence of the single basepoint with respect to which one consid-
ers both the labels and the labeled objects [cf. the discussion of Remark 3.5.2, (ii)].
Here, it is also useful to observe that by working with the various objects introduced
in Corollary 4.7, (i), that are equipped with a sub-/super-script “mod”, “sol”, or
“k-sol” — i.e., on which the various conjugacy indeterminacies involved act in a
synchronized fashion — one may construct the various diagonal subcategories as-
sociated to the corresponding Frobenioids in a fashion in which one is not obliged
to contend with the technical subtleties that arise from independent conjugacy
indeterminacies at distinct labels [cf. the discussion of “Galois-invariants/Galois-
orbits” in Remark 3.8.3, (ii)]. In [IUTchIII], the ring structure on these objects
equipped with a subscript “mod” will be applied as a sort of translation appara-
tus between “H-line bundles” [i.e., arithmetic line bundles thought of as additive
modules with additional structure] and “X-line bundles” [i.e., arithmetic line bun-
dles thought of “multiplicatively” or “idelically”, as in the theory of Frobenioids]
— cf. [AbsTopllIl], Definition 5.3, (i), (ii).

Remark 4.7.3. At this point, it is of interest to review the significance of the
Ffi— and F;*-symmetries in the context of the theory of the present §4.

(i) First, we recall that, in the context of the present series of papers, the “IF;”
that appears in the notation “Ffi” and “F;” is to be thought of — since [ is
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“large” — as a sort of finite approximation of the ring of rational integers 7 [cf.
the discussion of [[UTchI], Remark 6.12.3, (i)]. That is to say, the F**-symmetry
corresponds to the additive structure of Z, while the F;*-symmetry corresponds
to the multiplicative structure of Z. Since the “IF;” under consideration arises
from the torsion points of an elliptic curve, it is natural — especially in light of
the central role played in the present series of papers by v € VP24 to think of
the “Z” under consideration as the Galois group “Z” of the universal combinatorial
covering of the Tate curves that appear at v € yPhad [cf. the discussion at the
beginning of [EtTh], §1]. In particular, in light of the theory of Tate curves, it is
natural to think of this “Z” as representing a sort of universal version of the value
group associated to a local field that occurs at a v € VP24 and to think of the
element 0 € Z — hence, the label

0e |]Fl‘
— as representing the units.

(ii) Perhaps the most fundamental difference between the Ffi- and F*-sym-
metries lies in the fact that the Ffi—symmetry involves the zero label 0 € ||
[cf. the discussion of [IUTchl], Remark 6.12.5]. In particular, the Ffi—symmetry
is suited to application to the “units” — i.e., to the various local “O*” and “O**”
that appear in the theory. At a more technical level, this relationship between the
Ffi—symmetry and “O*” may be seen in the theory of §3 [cf. also Corollaries 4.5,
(iii); 4.6, (iif)]. That is to say, in §3 [cf. the discussion of Remark 3.8.3], the F;**-
symmetry is applied precisely to establish conjugate synchronization, which,
in turn, will be applied eventually to establish the crucial coricity of “O*#” in
the context of the ©XK-link [cf. Corollary 4.10, (iv), below|. Here, let us observe

gau

that the conjugate synchronization, established by means of the ]Ffi—symmetry, of
copies of the absolute Galois group of the local base field at various v € V" is a
very delicate property that depends quite essentially on the “arithmetic holomorphic
structure” of the Hodge theaters under consideration. That is to say, from the point
of view of the theory of §1, conjugate synchronization in one Hodge theater fails
to be compatible with conjugate synchronization in another Hodge theater with a
distinct arithmetic holomorphic structure. Put another way, from the point of view
of the theory of §1, conjugate synchronization can only be naturally formulated in
a uniradial fashion. This uniradiality may also be seen at a purely combinatorial
level, as we shall discuss in Remark 4.7.4 below. On the other hand, if one passes to
mono-analyticizations — e.g., to mono-analytic processions — then the mono-
analytic “O*"” that appears in the © k-link [cf. Corollary 4.10, (iv), below] is,
by contrast, coric. That is to say, by relating the zero label, which is common
to distinct arithmetic holomorphic structures, to the various nonzero labels, which
belong to a single fized arithmetic holomorphic structure, the condition of invariance
with respect to the Ffi—symmetry may — e.g., in the case of the mono-analytic
“O*H” — amount to a condition of coricity. In particular, in the case of the
momno-analytic “O*H”,

the Ffi-symmetry plays the role of establishing the coric pieces —i.e.,
components which are “uniform” with respect to all of the distinct arith-
metic holomorphic structures involved — of the apparatus to be estab-
lished in the present series of papers.
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This dual role — i.e., consisting of both uniradial and coric aspects — played by
the ]Ffi—symmetry is to be considered in contrast to the strictly multiradial role
[cf. (iil) below] played by the F;*-symmetry. Also, in this context, we observe that
the symmetrization, effected by the Fﬁi-symmetry, between zero and nonzero
labels may be thought of, from the point of view of (i), as a symmetrization between
[local] units and value groups and, hence, in particular, is reminiscent of the
intertwining of units and value groups effected by the log-link [cf. [ITUTchIII],
Remark 3.12.2, (i), (ii)], as well as of the crucial compatibility between the F,'*-
symmetrizing isomorphisms [i.e., that give rise to the conjugate synchronization]
and the log-link [cf. [IUTchIII], Remark 1.3.2].

(iif) The significance of the F;*-symmetry lies, in a word, in the fact that it
allows one to separate the zero label from the nonzero labels. From the point
of view of the theory of the present series of papers, this property makes the F;*-
symmetry well-suited for the construction/description of the internal structure of
the Gaussian monoids, which are, in effect, “distributions” or “functions” of a
parameter j € F;* [cf. Corollaries 4.5, (iv), (v); 4.6, (iv), (v)]. Here, we note that
this separation of the zero label — which parametrizes coric data that is common
to distinct arithmetic holomorphic structures — from the nonzero labels — which
parametrize the components of the Gaussian monoid associated to a particular
arithmetic holomorphic structure — is crucial from the point of view of describing
the Gaussian monoid associated to a particular arithmetic holomorphic structure
in terms that may be understood from the point of view of some “alien” arithmetic
holomorphic structure. Put another way, from the point of view of the theory of §1,
the F/*-symmetry admits a natural multiradial formulation. This multiradiality
may also be seen at a purely combinatorial level, as we shall discuss in Remark
4.7.4 below. In this context, it is important to note that if one thinks of the coric
constant distribution, labeled by zero, as embedded via the diagonal embedding into
the various products parametrized by j € ]Fl* that appear in the construction of
the Gaussian monoids [cf. the isomorphisms that appear in the final displays of
Corollaries 4.5, (iii); 4.6, (iii)], then it is natural to think of the volumes computed at
each j € F}" as being assigned a weight 1/1* — i.e., so that the diagonal embedding
of the constant distribution is compatible with taking the constant distribution to
be of weight 1 [cf. the discussion of [IUTchl], Remark 5.4.2]. Put another way,
from the point of view of “computation of weighted volumes”, the various nonzero
j € F[* are “subordinate” to 0 € |F;| — ie., F 2 j < 0. In particular, to
symmetrize, in the context of the internal structure of the Gaussian monoids, the
zero and nonzero labels [i.e., as in the case of the ]Fl”i—symmetry!] amounts to
allowing a relation

0w 0
— which is absurd [i.e., in the sense that it fails to be compatible with weighted
volume computations]!
Remark 4.7.4.

(i) One way to understand the underlying combinatorial structure of the
uniradiality of the [F}* *_symmetry and the multiradiality of the F}* -symmetry [ct.
the discussion of Remark 4.7.3, (ii), (iii)] is to consider these symmetries — which
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are defined relative to some given arithmetic holomorphic structure [or, at a more
technical level, some given ©F°" NF-Hodge theater — cf. [IUTchI], Definition 6.13,
(i)] — in the context of the étale-pictures that arise from each of these symmetries
[cf. [IUTchI], Corollaries 4.12, 6.10]. In the case of the F;**- (respectively, Fj-)
symmetry, this étale-picture consists of a collection of copies of F; (respectively,
|F| = F; U {0}), each copy corresponding to a single arithmetic holomorphic
structure, which are glued together at the coric label 0 € Ty (respectively, 0 € |F]).
In Fig. 4.1 (respectively, 4.2) below, an illustration is given of such an étale-picture,
in which the notation “+” (respectively, “x”) is used to denote the various elements
of F; \ {0} (respectively, F;*) in each copy of F; (respectively, |F;|). Moreover, on
each copy of F; (respectively, |F;|) — labeled, say, by some spoke « [corresponding
to a single arithmetic holomorphic structure] — one has a natural action of a
“corresponding copy” of Ffi (respectively, Fl*)

(ii) The fundamental difference between the simple combinatorial models of
the étale-pictures considered in (i) lies in the fact that whereas

(a) in the case of the Ffi—symmetry, the Ffi—actions on distinct spokes fail
to commute with one another,

(b) in the case of the F;*-symmetry, the F;*-actions on distinct spokes com-
mute with one another and, moreover, are compatible with the permu-
tations of spokes discussed in [IUTchI], Corollary 4.12, (iii).

Indeed, the noncommutativity, or “incompatibility with simultaneous execution at
distinct spokes” [cf. Remark 1.9.1], of (a) is a direct consequence of the inclusion
of the zero label in the Ffi—symmetry and may be thought of as a sort of pro-
totypical combinatorial representation of the phenomenon of uniradiality.
By contrast, the commutativity, or “compatibility with simultaneous execution at
distinct spokes” [cf. Remark 1.9.1], of (b) is a direct consequence of the exclusion of
the zero label from the F;*-symmetry and may be thought of as a sort of prototypi-
cal combinatorial representation of the phenomenon of multiradiality. Note that
in the case of the Ffi—symmetry, it is also a direct consequence of the inclusion
of the zero label that the condition of invariance with respect to the Ffi—actions
on all of the spokes may be thought of as a condition of “uniformity” among the
elements of the copies of IF; at the various spokes, hence as a sort of coricity [cf.
the discussion of Remark 4.7.3, (ii)].

+ +

Y%

+ =+

.
+ + + +

— 0 —

% — - 5%
+ =+ + =+

Fig. 4.1: Etale-picture of F;**-symmetries
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X % X X%
N o 0 o N
% % X %

Fig. 4.2: Etale—picture of Ff—symmetries

(iii) Although the combinatorial versions of uniradiality and multiradiality dis-
cussed in (ii) above are not formulated in terms of the formalism of uniradial and
multiradial environments developed in §1 [cf. Example 1.7, (ii)], it is not difficult to
produce such a formulation. For instance, one may take the coric data to consist of
objects of the form “0,” — i.e., the zero label, subscripted by the label o associated
to some spoke. For any two spokes «, (3, we define the set of arrows

Oa—>05

to consist of precisely one element (o, 3). We then take, in the case of the Ffi—
(respectively, F;*-) symmetry, the radial data to consist of a copy (F;), (respectively,
|F;|o) of F; (respectively, |F;|) subscripted by the label a associated to some spoke.
For any two spokes a, 3, we define the set of arrows

(Fi)a — (Fi1)p (respectively, |Filo — |Fi|g)

to consist of precisely one element if the actions (F)'F), ~ (), (respectively,
(F)y ~ (|Fi])5), for v = a, B, determine an action of

(lei)a 5 (Ffi)g (respectively, (F;)o x (F/)p)

on the co-product (F;)o [[, (F1)s (respectively, (|F;|)a [, (|Fi|)s) obtained by
identifying the respective zero labels 0,, 0g, and to equal the empty set if such
an action does not exist. Then one has a natural radial functor (F;), + 04
(respectively, ||, +— 0,) that associates coric data to radial data. Moreover, the
resulting radial environment is easily seen to be uniradial (respectively, multiradial).
We leave the routine details to the reader. Finally, we note in passing that the
formulation involving products given above is reminiscent both of the discussion of
the switching functorin Example 1.7, (iii), and of the discussion of parallel transport
via connections in Remark 1.7.1.

Remark 4.7.5. In the context of the discussion of the combinatorial models
of the Ff‘i— and F}*-symmetries in Remark 4.7.4, it is useful to recall that the
Ffi— and Ff—symmetries correspond, respectively, to the additive and multiplicative
structures of the field F; — which [cf. Remark 4.7.3, (i)] we wish to think of as a
sort of finite approximation of the ring Z. That is to say, from the point of view of
the theory of the present series of papers,

(a) the Ffi— and Fl*—symmetries correspond, respectively, to the two com-
binatorial dimensions — i.e., addition and multiplication — of a ring [cf.
the discussion of [AbsToplll], §13].



148 SHINICHI MOCHIZUKI

Moreover, in the context of the discussion of Remark 4.7.3, (i), concerning units
and wvalue groups, it is useful to recall that these two combinatorial dimensions may
be thought of as corresponding to

(b) the units and value group of a mixed-characteristic nonarchimedean or
complex archimedean local field [cf. the discussion of [AbsToplII], §I3]

or, alternatively, to

(¢) the two cohomological dimensions of the absolute Galois group of a
mixed-characteristic nonarchimedean local field or the two underlying real

dimensions of a complex archimedean local field [cf. the discussion of
[AbsTopllI], §I3].

Finally, the hierarchical structure of these two dimensions — i.e., the way in which
“one dimension [i.e., multiplication] is piled on top of the other [i.e., addition]” —
is reflected in the

(d) subordination structure “<K”, relative to the computation of weighted
volumes, of nonzero labels with respect to the zero label [cf. the discussion
of Remark 4.7.3, (iii)].

as well as in the fact that

(e) the Ffi—symmetry arises from the conjugation action of the geometric
fundamental group [cf. Remarks 3.5.2, (iii); 4.5.3, (i)], whereas the F}*-

symmetry arises from the conjugation action of the absolute Galois group
of the global base field [cf. Remark 4.7.2]

— i.e., where we recall that the arithmetic fundamental groups involved may be
thought of as having a natural hierarchical structure constituted by their extension
structure [corresponding to the natural outer action of the absolute Galois group of
the base field on the geometric fundamental group].

Remark 4.7.6. One important observation in the context of Corollary 4.7, (i),
is that it makes sense to consider non-realified global Frobenioids [correspond-
ing, e.g., to “Fimoa”] only in the case of the F/*-symmetry. Indeed, in order to
consider the field “F,oq” from an anabelian, or Galois-theoretic, point of view, it
is necessary to consider the full profinite group I, — i.e., not just the open sub-
groups ll¢ , lIx of IIc, which give rise, respectively, to the global portions of the
F*- and F,**-symmetries [cf. [[UTchI], Definition 4.1, (v); [[UTchI], Definition 6.1,
(v)]. On the other hand, to work with the abstract topological group Ilc, means
that the subgroups Il , Ix  of Il¢,. are only well-defined up to ¢, -conjugacy.
That is to say, in this context, the subgroups Il¢ , IIx —are only well-defined
up to automorphisms arising from their normalizers in I, [cf. the discussion
of [IUTchI], Remark 6.12.6, (iii), (iv)]. In particular, in the present context, one
is obliged to regard these groups Il¢ , Iy as being subject to indeterminacies
arising from the natural IFZ* -poly-actions [i.e., actions by a group that surjects nat-
urally onto F;* — cf. [I[UTchI], Example 4.3, (iv)] on these groups — that is to
say, subject to indeterminacies arising from the natural F;*-symmetries of these
groups. Here, it is important to note that one cannot simply “form the quotient
by the indeterminacy constituted by these Ff—symmetries” since this would give
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rise to “label-crushing”, i.e., to identifying to a single point the distinct labels
j e IF?G, which play a crucial role in the construction of the Gaussian monoids [cf.
the discussion of [TUTchI], Remark 4.7.1]. But then the F;*-symmetries of II¢_,
Ix  that one must contend with necessarily involve conjugation by elements of the
absolute Galois groups of the global base fields involved, hence are fundamentally
incompatible with the establishment of conjugate synchronization [cf. the discussion
of Remark 4.7.2]. That is to say, just as it is necessary to

(a) isolate the Ffi-symmetry from the F;*-symmetry in order to establish
conjugate synchronization [cf. the discussion of Remark 4.7.2],

it is also necessary to

(b) isolate the F;*-symmetry from the ]Ffi—symmetry in order to work
with Galois-theoretic representations of the global base field Fi, 4.

Indeed, in this context, it is useful to recall that one of the fundamental themes
of the theory of the present series of papers consists precisely of the dismantling
of the two [a priori intertwined!] combinatorial dimensions of a ring [cf. Remarks

4.7.3, 4.7.5; [AbsToplll], §13].

Remark 4.7.7. The theory of “tempered versus profinite conjugates” developed
in [IUTchI], §2, is applied in the proof of Corollary 2.4, (i), in a setting which
ultimately [cf. Remark 2.6.2, (i); Corollary 4.5, (iii)] is seen to amount to a certain
local portion [at v € V"] of a [D-]O@*°-Hodge theater — i.c., a setting in
which one considers the Ffi-symmetry. On the other hand, in [IUTchI], Remark
4.5.1, (iii), a discussion is given in which this theory of “tempered versus profinite
conjugates” developed in [IUTchI|, §2, is applied in a setting which constitutes a
certain local portion [at v € V"*] of a [D-]ONF-Hodge theater. In this context,
it is useful to note that the point of view of this discussion given in [IUTchI],
Remark 4.5.1, (iii), may be regarded as “implicit” in the point of view of the theory
of the present §4 in the following sense: The profinite conjugacy indeterminacies
that occur in an [D-]JONF-Hodge theater [cf. [IUTchI], Remark 4.5.1, (iii)] are
linked via the gluing operation discussed in [IUTchI], Remark 6.12.2, (i), (ii) — cf.
Corollaries 4.6, (iv); 4.7 — to the profinite conjugacy indeterminacies that occur
in an [D-]©*-Hodge theater [cf. Remarks 2.5.2, (ii), (iii); 2.6.2, (i); 4.5.3, (iii)],
i.e., to the profinite conjugacy indeterminacies that are “resolved” in the proof of
Corollary 2.4, (i), by applying the theory of [[UTchI], §2.

Corollary 4.8. (Frobenioid-theoretic Monoids Associated to ©ONF-
Hodge Theaters) Let

TwzF ng
VA

T TONF _ (TJ:@ PR iy 2C) fx, X T3> s THT@))
be a« ONF-Hodge theater [cf. [IUTchl], Definition 5.5, (iii)] which lifts the D-
ONF-Hodge theater 3 P-ONF of Corollary 4.7 and is glued to the ©F°'-Hodge

theater T"HTQieH of Corollary 4.6 via the functorial algorithm of [IUTchI], Propo-
sition 6.7 [so J =T*] — cf. the discussion of [IUTchl], Remark 6.12.2, (i), (ii).
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(i) (Non-realified Global Structures) There is a functorial algorithm
in the category T F® [or in the category TF®] — cf. the discussion of [[UTchI], Ex-
ample 5.1, (v), (vi), concerning isomorphisms of cyclotomes and related Kum-
mer maps — for constructing Kummer isomorphisms of pseudo-monoids
[the first two of which are equipped with group actions and well-defined up to a
single congugacy indeterminacy]

~

{ﬂ_ln-sol(TD@) ~ TMo@oH} X {ﬂ.fli-solUD@) ~ MER(TD@))}; TM% — M%(TD@))

and, hence, by restricting Kummer classes as in the discussion of [IUTchl],
Ezample 5.1, (v), natural “Kummer-theoretic” isomorphisms

{m(D®) ~ Mo} 5 {m(D%) ~ me(D%)}
{m(D%) ~ W%} 5 {m(D®) ~ (D0}

{w’f‘SOI(TDC’B) ~ TME

sol

b (Do) A Mg (D))

~ —® ~ —=®
TMr@iod - Mré?lod(TDGD)’ TIMImod — Mmod(TD@)

— which may be interpreted as a compatible collection of isomorphisms of
Frobenioids

~

TFre X ]:@(TD@)’ Tre X }"@(TD@)

TF@ :> ‘Fr%odUD@)? Jr‘F‘E}){d :> fr%}fd(TIDCQ)

mod

[cf. the discussion of [IUTchI], Example 5.1, (i), (iii)].

(ii) (Labels and F;*-Symmetry) In the notation of Corollary 4.7, (ii), the
collection of isomorphisms of Corollary 4.6, (i) [applied to the F-prime-strips of
the capsule '§7; cf. also the discussion of [IUTchI], Example 5.4, (iv)], together
with the isomorphisms of (i) above, determine, for each j € LabCusp(TD®) ( = J)
[cf. the bijection "¢y of Corollary 4.7, (ii)], a collection of isomorphisms

'3 5 1Fe; 3 FO(DO);

(ME.); = M2

mod mod

—® ~ =—=®
(D®);,  (Mpeq); — Mpea(TD®);
{n7(1D®) ~ TME};, 5 {n7(1D®) ~ ME,(TD®)},

{ﬂ_ff-sol(TD@) ~ TMo@oR}j ; {ﬂ_fli-sol(TD@) N M?OH(T'Z)@)}]

('D®);, (F2E); = FE&(D°);

(Tfrf?od)j :> ‘Fr(:?od mod mod

as well as [F}-]symmetrizing isomorphisms, induced by the natural poly-action
of F¥ on TF® [cf. [IUTchI], Example 4.3, (iv); [IUTchI], Corollary 5.3, (i)], be-
tween the data indexed by distinct j € LabCusp(TD®). Here, [just as in Corollary
4.7, (ii)] the objects equipped with w52t(TD®)(— wFs°L(TD®))-actions are to be re-
garded as being subject to independent Wiat/ F"_SOI(TD@)-conjugacy indetermina-

cies for distinct j, together with a single (7*(TD®) —)rf°/(TD®)-conjugacy
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indeterminacy that is independent of j [cf. the discussion of the final portion of
[IUTchI], Example 5.1, (i)]. Moreover, these symmetrizing isomorphisms are com-
patible, relative to 1Cx [cf. Corollary 4.7, (ii)], with the F-symmetry of the as-
sociated NF-bridge [cf. [IUTchI], Proposition 4.9, (i); [[UTchl], Corollary 5.6, (ii)]
and determine various diagonal F-prime-strips/submonoids/subrings/sub-
pseudo-monoids [equipped with a group action subject to conjugacy indetermina-
cies as described above//subcategories

(_)(]Fj‘f) - H <_>j

JEF]

[i.e., relative to the conventions discussed in Corollary 4.7, (ii); cf. also Remark

4.7.2].

(iii) (Localization Functors and Realified Global Structures) Let j €
LabCusp(TD®). In the following, objects associated to an F-prime-strip labeled by
J at an element v € Vyoq will be denoted by means of a label “v;”. Then there is
a functorial algorithm in the NF-bridge (1§; — TF® --s TF®) for constructing
mutually [1-]Jcompatible collections of “localization” functors/poly-morphisms
[up to isomorphism]
(Food)i = '8 (Faeadi — T3

mod

{{ri=(D®) ~ M2 = Mows, € Mo, )
vey¥
as in the discussion of [IUTchI], Example 5.4, (iv), (vi) [cf. also [IUTchl], Defini-
tion 5.2, (vi), (viii)] — which are compatible, relative to the various [Kummer/
“Kummer-theoretic”] isomorphisms of (i), (i) [cf. also [IUTchI], Definition 5.2,
(vi), (viii)], with the collections of functors/poly-morphisms of Corollary 4.7, (iii)
— together with a natural isomorphism of Frobenioids
RN

[¢f. the notation of Corollary 4.6, (ii); [IUTchI], Remark 5.2.1, (ii), applied to
the F-prime-strip 15;] which is compatible [cf. Remark 4.8.3 below] with the
respective bijections involving “‘Prime(—)”, the respective local isomorphisms
of topological monoids [cf. the arrow (TFEE); — TS? discussed above;
[IUTchl], Remark 5.2.1, (ii)], the isomorphisms of Corollary 4.7, (i), and the vari-
ous [“Kummer-theoretic”| isomorphisms of (i), (ii) [cf. also Corollary 4.6, (ii)]. Fi-
nally, all of these structures are compatible with the respective F}*-symmetrizing
isomorphisms [cf. (ii)].

Proof. The various assertions of Corollary 4.8 follow immediately from the defini-
tions and the references quoted in the statements of these assertions. ()

Remark 4.8.1.

(i) The Frobenioid C",  (FHT®) of Corollary 4.6, (v), is constructed as a sub-

gau
category of a product over j € IFZ* of copies TC"; of the category TC'". In particular,
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~

one may apply the isomorphism TC'; — (Tfffd) ; of Corollary 4.8, (iii), to regard
this Frobenioid Cgau(THTQ) as a subcategory
b (tay7© (tFER )
Crho.(HT®) < ] (7

mod
jeF)

of the product over j € F}¥ of the (TFEE);.

mod

(ii) In a similar vein, the local data at v € V of the objects U r (tHT®)
constructed in Corollary 4.6, (iv), gives rise to [the local data at v of an F'" -prime-
strip, i.e., in particular, to] split Frobenioids Fyan("HT®), [cf. Definition 3.8, (ii),
in the case of v € V"*]. Write Fyan(THT®) for the F-prime-strip determined by
this local data .7-"g;m(]t3'-['7'®)E at v, for v € V, and

Faan((HTO)R

for the object obtained by forming, at each v € V, the realification of the underlying
Frobenioid of ]:gau(T’HT@) at v. Then it follows from the construction discussed in
Corollary 4.6, (iv), that one may think of the realified Frobenioid, at each v € V,
of Fean(FHTE)R as being naturally [“poly-"]embedded

Fean((HTOE T (18%);

JEF,

[where we use this notation to denote the collection of [“poly-"|embeddings indexed
by v € V] in the product of copies of realifications of [the underlying Frobenioids
of] the F-prime-strip '§~ labeled by j € F*. Moreover, by applying the full poly-
isomorphisms (§~); — 1§; — which are tautologically compatible with the labels
j € FFl — we may think of Fya,(1HT )R as being naturally [“poly-"]embedded

Fead "HTO)® = T 187

J€F,

[where we use this notation to denote the collection of [“poly-"]embeddings in-
dexed by v € V] in the product associated to the realifications of [the underlying
Frobenioids of] the F-prime-strips 5.

(iii) Thus, by applying the various [“poly-"|embeddings considered in (i), (ii),
one may think of the “realified localization” functors

mod/J

(Frsai = '8

of Corollary 4.8, (iii), as inducing a “realified localization” functor [up to isomor-
phism]
Coan THT®) = Faa("HT)"

— which [as one verifies immediately| is compatible [cf. the various compatibil-
ities discussed in Corollary 4.8, (iii)] with the realified localization isomorphisms
e (1HTO)w = lI/]:gau(THT@)E, for v € V, considered in Corollary 4.6, (v).
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Remark 4.8.2.

(i) The realified localization functor discussed in Remark 4.8.1, (iii), only
concerns the realification of the Frobenioid-theoretic version fgau(THTe) of the
Gaussian monoids. The unit portion of the Gaussian monoids will be used, in
the context of the theory involving the log-wall that will be developed in [TUTchIII],
not in its capacity as a “multiplicative object”, but rather — i.e., by applying the
operation “log” to the units at the various v € V, as in the theory of [AbsTopIII]
— as an “additive object”. In this theory, the non-realified global Frobenioids of
Corollary 4.8, (i), will appear in the context of localization functors/morphisms —
i.e., as a sort of translation apparatus between X- and H-line bundles [cf. the
discussion of Remark 4.7.2] — that relate these /multiplicative!] non-realified global
Frobenioids to the [additive!] images via “log” of the units. Note that this sort of
construction — i.e., in which the localization operations involving units and value
groups differ by a shift via the operation “log” — depends, in an essential way [cf.
the discussion of Remark 1.12.2, (iv)], on the natural splittings with which the
Gaussian monoids are equipped [cf. Corollary 4.6, (iv)].

(ii) In the context of (i), it is useful to observe that, although the non-realified
global Frobenioids of Corollary 4.8, (i), may only be considered in the context of the
F}*-symmetry [cf. the discussion of Remark 4.7.6], this does not yield any obstacles,
relative to the discussion in (i) of Gaussian monoids, since Gaussian monoids are

most naturally considered as “functions” of a parameter j € F;* [cf. the discussion
of Remark 4.7.3, (iii)].

(iii) From the point of view of the analogy of the theory of the present series
of papers with p-adic Teichmiiller theory [cf. the discussion of [AbsToplIII], §I5], it
is of interest to note that the construction discussed in (i) involving the use of the
natural splittings of Gaussian monoids to consider “log-shifted units” together with
“non-log-shifted value groups” may be thought of as corresponding to the situation
that frequently occurs in p-adic Teichmiiller theory in which an indigenous bundle
(€, Ve) equipped with a Hodge filtration 0 — w — £ — 7 — 0 on a hyperbolic curve
in positive characteristic is represented, in the context of local Frobenius liftings
modulo higher powers of p, as a direct sum

Pt O w

— where ® denotes the Frobenius morphism on the curve, which, as may be recalled
from the discussion of [AbsTopllIl], §I5, corresponds, relative to the analogy under
consideration, to the operation “log” studied in [AbsToplII].

Remark 4.8.3. Similar observations to the observations made in Remark 4.5.2,
(i), (ii), concerning the ]F;"i-symmetrizing isomorphisms of Corollary 4.5, (iii), may
be made in the case of the F}*-symmetrizing isomorphisms of Corollary 4.8, (ii).

Definition 4.9.

(i) Let C be an arbitrary Frobenioid. Write D for the base category of C.
Suppose that D is isomorphic to the category of connected finite étale coverings
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of the spectrum of an MLF or a CAF. Let A be a “universal covering pro-object”

of D [cf. the discussion of Example 3.2, (i), (ii)]. Write G Lof Aut(A) [so G is
isomorphic to the absolute Galois group of an MLF or a CAF]. Now by evaluating
the monoid “O%(—)” on D that arises from the general theory of Frobenioids [cf.
[FrdI], Proposition 2.2] at A, we thus obtain a monoid [in the usual sense| equipped

with a natural action by G
G ~ O%(A)

[cf. the discussion of Example 3.2, (ii)]. If N is a positive integer, then we shall
write

un(A) C OM(A4) C O%(A)

for the subgroups of N-torsion elements [cf. [FrdIl], Definition 2.1, (i)] and torsion
elements of arbitrary order,

OX(A) — OBV(A) —  OXH(A)

for the respective quotients of the submonoid of units O* (A4) C O% (A) by un(A),
OF(A). Thus, O%(A), O*(A), O*K¥~(A), O**(A), un(A), and OF(A) are all
equipped with natural G-actions. Next, let us suppose that G is nontrivial [i.e.,
arises from an MLF]. Recall the group-theoretic algorithms “G +— (G ~ O*(G))”
and “G — (G ~ O*K(@G))” discussed in Example 1.8, (iii), (iv). We define
a X-Kummer structure (respectively, xp-Kummer structure) on C to be a 7%-
(respectively, Ism- [cf. Example 1.8, (iv)]) orbit of isomorphisms

~ ~

X OX(G) S 0%(A) (respectively, r**:O*H*(G) —= O**(A))

of ind-topological G-modules. Note that since any two “universal covering pro-
objects” of D are isomorphic, it follows immediately that the definition of a x-
(respectively, xpu-) Kummer structure is independent of the choice of A. Next, let
us recall from Remark 1.11.1, (b), that

any x-Kummer structure on C is unique.

In the case of x u-Kummer structures, let us observe that a x u-Kummer structure
k™M on C determines, for each open subgroup H C G, a submodule

Ip(A) < mOoXG)") c 0*H(A)

— namely, the image via k*¥ of the image of O*(G)# in O*¥(G)H [where the
superscript “H’s” denote the submodules of H-invariants]. Conversely, it is es-
sentially a tautology [cf. the definition of “Ism” given in Example 1.8, (iv)!] that
the xp-Kummer structure k** on C is completely determined by the submodules
{Z},(A) C O**(A)} g [where H ranges over the open subgroups of GJ, namely, as
the unique Ism-orbit of G-equivariant isomorphisms O*H(G) = O*H*(A) that maps
O*(G)H onto I (A) for each open subgroup H C G. That is to say,

a x u-Kummer structure ** on C may be thought of as — i.e., in the
sense that it determines and is uniquely determined by — the collection
of submodules {Z};(A) C O**(A)}y [where H ranges over the open
subgroups of G].
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Finally, we shall refer to as a [x-, x u-/Kummer Frobenioid any Frobenioid equipped
with a [x-, xp-]Kummer structure. We shall refer to as a split-/x-, X pu-/Kummer
Frobenioid any split Frobenioid equipped with a [x-, x u-|Kummer structure.

(ii) Let
i%y'_ = {ifg}yey

be an F©-prime-strip; w € VP Write 195 = {iDZ}yey for the D" -prime-
strip associated to *F" [cf. [[UTchI], Remark 5.2.1, (i)]. Thus, i]—"@ is a split
Frobenioid [cf. [IUTchl], Definition 5.2, (ii), (a); [IUTchI], Example 3.2, (v)], with

base category D! . Let *A be a “universal covering pro-object” of *D! [cf. the

discussion of (i)]. Write *G def Aut(*A) [so *G is a profinite group isomorphic to

G.]. Then the 2l-torsion subgroup po(*A) C O*(*A) of the submonoid of units
O*(*A) C O (*A) of O™ (* A), together with the images of the splittings with which
tF is equipped, generate a submonoid O+(*A) C OP(*A), whose quotient by
oy (FA) we denote by

def

o"(t4) 2 0 (A - O*(14) O+ (*A)/pau (* 4)

~

[so we have a natural isomorphism O (*A)/O*(*A) 5 O™ (*A)]. Write

OFxuEA) L or(TA) x O*k(tA)
for the direct product monoid. Thus, the monoids O™ (*A), O+(*A4), O™ (*A),
O*(tA), O*r(*A), Or(*A), and O®*H(*A) are all equipped with natural *G-
actions. Next, we consider the group-theoretic algorithms “G — (G ~ O*(QG))”
and “G — (G ~ O*H*(G))” discussed in Example 1.8, (iii), (iv). If we apply the
first of these algorithms to *G, then it follows from Remark 1.11.1, (b), that there
exists a unique 7% -orbit of isomorphisms

~

fer 07(PG) 5 0%(f4A)

of ind-topological modules equipped with *G-actions. Moreover, x! % induces an
Ism-orbit [cf. Example 1.8, (iv)] of isomorphisms

bhxw oxmiEg)y 50 0*#(A)

— i.e., by forming the quotient by “OH(—)".

(iii) In the notation of (ii), the [rational function monoid determined by the
groupification of the] monoid with ¥G-action O™ *#(*A), together with the divisor
monoid of [the underlying Frobenioid of] * 7!, determines a “model Frobenioid” [cf.
[FrdI], Theorem 5.2, (ii)] equipped with a splitting, i.e., the splitting arising from
the definition of O™ *#(*A) as a direct product. Thus, the *G-module obtained by
evaluating at A the group of units “O*(—)” (respectively, the monoid “O>(—)")
associated to this Frobenioid may be naturally identified with O*#(*A) (respec-
tively, O™ *#(*A)). In particular, the Ism-orbit of isomorphisms *x! *# determines
a X pu-Kummer structure on this Frobenioid. We shall write B

i]:;PXM
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for the resulting split-Kummer Frobenioid and — by abuse of notation! —
'_
i].‘ﬂ

for the split-Kummer Frobenioid determined by the split Frobenioid F' equipped
with the x-Kummer structure determined by ¥x[*. Here, we remark that the
primary justification for this abuse of notation lies in the uniqueness of x-Kummer
structures discussed in (i) above.

(iv) Let ¥~ be as in (ii); w € V& V™", Thus, !, is a split Frobenioid [cf.
[IUTchI], Definition 5.2, (ii), (a); IUTchI], Example 3.3, (i)], with base category
D Let *A be a “universal covering pro-object” of *D! [cf. the discussion of

(i)]. Write *G oot Aut(*A) [so *G is a profinite group isomorphic to G,]. Then
the image of the splitting with which I}E is equipped determines a submonoid
OL(FA) C OP(FA). Write O™ (tA) &' 0L(t4),

OFxuEA) L oP(TA) x O*k(1A)

for the direct product monoid. Thus, the monoids O™ (*4), O+(*A), O™ (*A),
O*(*A), O*r(*A), Or(*A), and O®*H(*A) are all equipped with natural *G-
actions. Next, we consider the group-theoretic algorithms “G +— (G ~ O*(G))”
and “G — (G ~ O*H*(G))” discussed in Example 1.8, (iii), (iv). If we apply the
first of these algorithms to *G, then it follows from Remark 1.11.1, (b), that there
exists a unique Z*-orbit of isomorphisms
e 0°(PG) 5 0%(FA)
of ind-topological modules equipped with *G-actions. Moreover, imix induces an
Ism-orbit [cf. Example 1.8, (iv)] of isomorphisms
thxw oxmiEg)y 50 0*k(3A)

w

— i.e., by forming the quotient by “O#(—)”. The [rational function monoid de-
termined by the groupification of the] monoid with *G-action O™ *¥(*A), together
with the divisor monoid of [the underlying Frobenioid of] *F!,, determines a “model
Frobenioid” [cf. [FrdI], Theorem 5.2, (ii)] equipped with a splitting, i.e., the splitting
arising from the definition of O™ *#(*A) as a direct product. Thus, the *G-module
obtained by evaluating at * A the group of units “O*(—)” (respectively, the monoid
“O(—)”) associated to this Frobenioid may be naturally identified with O*#(* A)
(respectively, O™ *#(*A)). In particular, the Ism-orbit of isomorphisms !, *# de-
termines a x p-Kummer structure on this Frobenioid. We shall write B

'_
i]:£> X
for the resulting split-Kummer Frobenioid and — by abuse of notation! [cf. the

discussion of (iii) above] —
I ]:1:
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for the split-Kummer Frobenioid determined by the split Frobenioid i]—"& equipped

with the x-Kummer structure determined by ¥x/ .

(v) Let 3" be as in (ii); w € V*"®. Then we shall write

i]:;>><u

for the collection of data obtained by replacing the split Frobenioid that appears in
the collection of data *F', [cf. [ITUTchI], Definition 5.2, (ii), (b); [[UTchI], Example
3.4, (ii)] by the inductive system, indexed by any [“multiplicatively”] cofinal subset
of the multiplicative monoid N>i, of split Frobenioids obtained [in the evident
fashion] from *F! by forming the quotients by the N-torsion, for N € N>;. Here,
we identify [in the evident fashion] the inductive systems arising from distinct cofinal
subsets of N>q. Thus, [cf. the notation of (i)] the wunits of the split Frobenioids of
this inductive system give rise to an inductive system

-  O"HN(A) —» ... o> O*ENN(A) >

[where N, N € N>1]. Now recall that iDL is an object of the category TM™ [cf.
[[UTchI], Definition 4.1, (iii), (b)]. In particular, the units (iDL)X of this object of

TM" form a topological group [noncanonically isomorphic to S!], which we think of
as being related to the above inductive system of units via a system of compatible
surjections

(D) — 0% (4)

[i.e., where the kernel of the displayed surjection is the subgroup of N-torsion|. This
system of compatible surjections is well-defined up to an indeterminacy given by
composition with the unique nontrivial automorphism of (*D! )*. When considered
up to this indeterminacy, this system of compatible surjections may be thought of as
a sort of Kummer structure on * F/»*# [which may be algorithmically reconstructed

from the collection of data i]—"&’;“].

(vi) Write
igl—bxu _ {ifll)—bxu}vev

for the collection of data indexed by V obtained as follows: (a) if v € V", then
we take *F»*H to be the split-Kummer Frobenioid constructed in (iii); (b) if v €
Veood M V™" then we take fF>*# to be the split- Kummer Frobenioid constructed
in (iv); (c) if v € V**°, then we take * 1 »*# to be the collection of data constructed
in (v). Moreover, by replacing the various split Frobenioids of *§" (respectively,
PP Xm) with the split Frobenioids — i.e., equipped with trivial splittings! —
obtained by considering the subcategories [of the underlying categories associated to
these Frobenioids| determined by the isometries [i.e., roughly speaking, the “units”
— cf. [FrdI], Theorem 5.1, (iii), in the case of v € V**"; [FrdIl], Example 3.3, (iii),
in the case of v € V*], one obtains a collection of data

B = {ifgx}yey (respectively, *§# = {ifix“}yew

indexed by V. Thus, for each v € V™", #F"* (respectively, J:}',L__X“) is a split-x -

v
(respectively, split-x u-) Kummer Frobenioid.
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(vii) Let FO € {Fx, Fxu, F» xp }. Then we define an F~2-prime-strip
to be a collection of data

*S'_D _ {*FL__D}QEY

such that for each v € V, *F'H is a collection of data that is isomorphic to 1.7-"'2_ -

[cf. (vi)]. A morphism of F -0 -prime-strips is defined to be a collection of isomor-
phisms, indexed by V, between the various constituent objects of the prime-strips
[cf. [IUTchI], Definition 5.2, (iii)].

(viii) We define an F'"™™*H_prime-strip to be a collection of data
T = (*C", Prime(*C") SV, T {*pytuev)

satisfying the conditions (a), (b), (¢), (d), (e), (f) of [[UTchlI], Definition 5.2, (iv),
for an F'"-prime-strip, where the portion of the collection of data constituted by
an JF -prime-strip is replaced by an F"™*H-prime-strip. Thus, relative to the
notation of the above display [cf. also (ii), (iii)], the generators of the monoids
“O®(=)” [each of which is abstractly isomorphic to N] of the data at v € VP (#
0) [cf. [IUTchI], Definition 3.1, (b)] of *F»*# = {*F »*F},cv, together with
the {*pw }wev, determine a well-defined object, up to isomorphism, of the global
realified Frobenioid *C" of negative “arithmetic degree” [cf. [Frdl], Example 6.3;
[FrdI], Theorem 6.4, (i), (ii)], which we refer to as the pilot object associated to the
FrexXu_prime-strip *F > *#. A morphism of F'™™ *F _prime-strips is defined to be
an isomorphism between collections of data as discussed above.

We conclude the present paper with the following two results, which may be
thought of as enhanced versions of [[UTchl], Corollaries 3.7, 3.8, 3.9 — i.e., versions
that reflect the various enhancements made to the theory in [IUTchlI], §4, §5, §6,
as well as in the present paper.

Corollary 4.10. (Frobenius-pictures of OT!NF-Hodge Theaters) Fiz
a collection of initial ©-data (F/F, Xp, |, Ck, V, Vbad =) a5 in [IUTchI],
Definition 3.1. Let

THTQ:‘:CHNF- iHTGiCIINF

be OF°'NF-Hodge theaters [relative to the given initial ©-data] — cf. [IUTch],

Definition 6.13, (i). Write THTD'GiEHNF, t947D-6""NF for the associated D-
O*'NF-Hodge theaters — cf. [IUTchl], Definition 6.13, (ii). Then:

(i) (Constant Prime-Strips) Let us apply the constructions of Corollary

4.6, (i), (iii), to the underlying ©*°"-Hodge theater of fg O NE, Then, for each
t e LabCuspi(T©>), the collection of data Wens(TT.): determines, in a natural
way, an F-prime-strip [cf. Remark 4.6.2, (i)]. Let us identify the collections of
data

\DCHS(TS>)0 and \IJCHS(T3>)<]F?€>

via the isomorphism of the second display of Corollary 4.6, (iii), and denote by

5 = (Ick, Prime(fck) 3V, 1§a, {Tpautoev)
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the resulting F'"-prime-strip determined by the constructions discussed in [TUTchI],
Remark 5.2.1, (ii) [which, as is easily verified, are compatible with the F,'*-
symmetrizing isomorphisms of Corollary 4.6, (iii)]. Thus, [it follows imme-
diately from the constructions involved that/ one has a natural identification
isomorphism of F'"-prime-strips T%Z = TS';IOd between TS'Z and the collec-

tion of data ", associated to the underlying ©-Hodge theater of THTeieuNF [cf.
[IUTchI], Definition 3.6, (c)] — cf. the discussion of the assignment

“0, = = >7
in Remark 3.8.2, (ii).

(ii) (Theta and Gaussian Prime-Strips) Let us apply the constructions
of Corollary 4.6, (iv), (v), to the underlying ©-bridge and ©*°"'-Hodge theater of

PHTO™'NE  Then the collection of data Ux,  ("HT®) [cf. Corollary 4.6, ()],

the global realified Frobenioid TC! Lo (IHT®) [c¢f. Corollary 4.6, (v)], and the
(THT@)E forv e [ef. Corollary 4.6,

env env
local isomorphisms Pei- (1y10), — Yr
(v)] give rise, in a natural fashion, to an F' -prime-strip

env

TS'SFHV = (Tcl;vv Prime(Tclanv) = v, ngnvv {TPeHV,y}QEY)

[so, in particular, L is the F-prime-strip determined by Vr. (HT®) — ¢f

Remark 4.6.2, (i); Remark 4.10.1 below]. Thus, [it follows immediately from the
constructions involved that] there is a natural identification isomorphism of

F*oprime-strips T35, = T3, between 1L and the collection of data TF,, as-
sociated to the underlying ©-Hodge theater of f9 O NF [ef. [TUTchl], Definition
3.6, (c)]. In a similar vein, the collection of data Wr_ (FHT®) [¢f. Corollary

gau

4.6, (iv)], the global realified Frobenioid TC", &ef ol (T’H’T@) [ef. Corollary 4.6,

gau gau

(v)], and the local isomorphisms Der (1170) 0 = \I/]:gau(THT@)§ forv eV [cf.

Corollary 4.6, (v)] give rise, in a natural fashion, to an F'" -prime-strip
I I : oy~ -
ngau - (Tcgauv Prlme(TCgau) — y? ngau’ {Tpgau,y}yey)

[so, in particular, T, is the F -prime-strip determined by V¥ x (T’HTG) — f.

gau gau

Remark 4.6.2, (i); Remark 4.10.1 below]. Finally, the evaluation isomorphisms of
Corollary 4.6, (iv), (v), determine an evaluation isomorphism

~

I+ I
TEGHV % ngau
of F'"-prime-strips.
(iii) (©*H- and O *-Links) Write i%zww (respectively, TFI»>Xm, TFIEXH)

gau env gau
1=

for the F'™™ XK _prime-strip associated to the F'™ -prime-strip igg (respectively, TSGHV ;
T3 ) [ef. Definition 4.9, (viii); the functorial algorithm described in Definition

gau

4.9, (vi)]. Then the functoriality of this algorithm induces maps

Isomzr (186, " h)  — ISOIH]:H—»XH.(TS”_>XI~L,igz»xll')

env) env

Isompr ("§gan: '¥R)  — Isomp»w(wgaﬁx“,132””)

gau’
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from fmonempty!] sets of isomorphisms of F'" -prime-strips to nonempty!/ sets
of isomorphisms of F'®*F _prime-strips. Here, the second map may be regarded
as being obtained from the first map via composition [in the case of the domain

“Isom g (—, —) ?] with the evaluation isomorphism g 5 Tg'gau of (ii) and
composition [in the case of the codomain “Isomziwxu(—, —)”] with the isomorphism

TgEexp o ng’x“ functorially obtained from this isomorphism of (ii). We shall

au
~

refer to the full poly-isomorphism TFE»>H = iSZ’X“ as the ©*#-link
THTeiellNF @j iHTGie“NF

[cf. the “O-link” of [IUTchl], Corollary 3.7, (i)] from t 7O INF 4 ¢H7-®ie“NF’

and to the full poly-isomorphism TS‘g:;X“ — i%'g’x“ as the ©XH-link

gau
T’HT@ieHNF %; i,HT@ieuNF
f,rom THTQieIINF tO iHTGiellNF'

(iv) (Coric F~*H-Prime-Strips) The definition of the unit portion of the
theta and Gaussian monoids involved [cf. Corollary 3.5, (ii); Corollary 3.6,
(ii); Proposition 4.1, (iv); Proposition 4.2, (iv); Proposition 4.3, (iv); Proposition
4.4, ()] gives rise to natural isomorphisms

TSZXM ~ TgFX;L ~ T%"‘XP«

env gau

— where we write TSZX“, [ ngaxu“ for the F™>H_prime-strips associated to
the F"-prime-strips 1§, 185, 1 gau, respectively [cf. the functorial algorithm
described in Definition 4.9, (vi)]. Moreover, by composing these natural isomor-
phisms with the poly-isomorphisms induced on the respective F~ P -prime-strips by

the © ¥~ and Ok -links of (iii), one obtains a poly-isomorphism

~

which coincides with the full poly-isomorphism between these two F~*H-prime-

strips — that is to say, “(_)SZX“ ”is an invariant of both the ©**- and ©XH -links.

gau

Finally, this full poly-isomorphism induces [cf. Definition 4.9, (vii); [IUTchI],
Remark 5.2.1, (i)] the full poly-isomorphism

~

ol 5 i

between the associated DT -prime-strips; we shall refer to this poly-isomorphism as
+ell +ell
the D-OFI'NF-link from THT PO N 4o +yTPO NF,

(v) (Coric Global Realified Frobenioids) The full poly-isomorphism D',

= DY of (i) induces [cf. Corollary 4.5, (ii)] an isomorphism of collections of
data

(D" (D), Prime(D" ("04)) = V, {Tppr ,}vev)

~

= (D" (*D}), Prime(D"(*DR)) =V, {*ppr ,}uev)
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— 1.e., consisting of a Frobenioid, a bijection, and a collection of isomorphisms of
topological monoids indexed by V. Moreover, this isomorphism of collections of data
is compatible, relative to the ©*#- and ©gh-links of (iii), with the R o-orbits
of the isomorphisms of collections of data

(e, Prime('c) = V, {Tpa ulvev)
5 (DY), Prime(D"(1DR)) SV, {Tppr oy uev)

(*Ck, Prime(*CR) 5 V, {*pav}vev)

~

= (DN (*DR), Prime(D" (*DL)) =V, {Fppr ,}vev)

obtained by applying the functorial algorithm discussed in the final portion of Corol-
lary 4.6, (ii). Here, the “Rsqg-orbits” are defined relative to the natural R (-
actions on the Frobenioids involved obtained by multiplying the “arithmetic de-
grees” by a given element € R~ [cf. [Frdl], Example 6.3; [Frdl], Theorem 6.4, (ii);
[IUTchl], Remark 3.1.5].

(vi) (Frobenius-pictures) Let {”HT@iellNF}nez be a collection of distinct
OTINF-Hodge theaters indexed by the integers. Then by applying the ©*F- and

O ki-links of (iii), we obtain infinite chains

OXH _ +ell (SRl +ell @XH +ell X~
(n 1)7_[7-@ NF nHT@ NF (n+1)HT® NF

exkr ek orxkr ok
gau (n_1)7_[7-®ie“NF gayu nHT@ie“NF gau (n+1)H7-®ie“NF gau

of ©@*H-/0XH . linked OT'"NF-Hodge theaters. Either of these infinite chains

gau

may be represented symbolically as an oriented graph r [cf. [AbsToplll], §0]

— e = e — e —

X
gau 5

— i.e., where the arrows correspond to either the “ @_x;; ’s” or the “ s”, and
the “@’s” correspond to the ‘“”HT@ieuNF 7. This oriented graph T admits a natural
action by 7. — 1i.e., a translation symmetry — but it does not admit arbitrary
permutation symmetries. For instance, T does not admit an automorphism that
switches two adjacent vertices, but leaves the remaining vertices fized — cf. the

discussion of [IUTchl], Corollary 3.8; [IUTchl], Remark 3.8.1.

Proof. The various assertions of Corollary 4.10 follow immediately from the defi-
nitions and the references quoted in the statements of these assertions. ()

Remark 4.10.1.  Strictly speaking [cf. Remark 4.6.2, (i)], the F" -prime-strips
constructed, in Corollary 4.10, (ii), from the theta and Gaussian monoids of Corol-
lary 4.6, (iv), are only well-defined up to an indeterminacy, at the v € vPad relative
to automorphisms of the split Frobenioid at such v € VP24 that induce the iden-
tity automorphism on the associated F'*-prime-strip. On the other hand, such
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indeterminacies may, in essence, be ignored, since they are “absorbed” in the full
poly-isomorphisms that appear in the ©@*#- and ©X*-links of Corollary 4.10, (iii).

gau

Remark 4.10.2.

(i) Although both the ©*#- and ©xk-links are treated, in essence, on an
equal footing in Corollary 4.10, in the remainder of the present series of papers, we
shall ultimately mainly be interested in [a further enhanced version of] the ©3F -
link. On the other hand, the significance of the ©*H-link lies in the fact that it is
precisely by thinking of [a further enhanced version of] the ©zF-link as an object
that is constructed as the composite of the ©*#-link with the operation of Galois
evaluation that one may establish the crucial multiradiality properties discussed

in [IUTchIII], Theorem 3.11.

(i) At v € V"™ the ©*¥-link may be thought of as a sort of equivalence
between the split theta monoids of Proposition 3.1, (i) [cf. also Corollary 1.12, (ii)]
and certain submonoids of the constant monoids of Proposition 3.1, (ii), equipped

with the splittings that arise from the g-parameter “q ” [cf. the discussion of “7/”

in [[UTchI], Example 3.2, (iv)]. On the other hand, it is important to note in this
context that unlike the case with the splittings that occur in the case of the theta
monoids, the splittings that occur in the case of the constant monoids do not arise
from the operation of Galois evaluation — i.e., from a splitting “H — G, ” at the
level of Galois groups of some surjection G, —» H. In particular, the splittings in
the case of the constant monoids do not admit a natural multiradial formulation
[cf. Remark 1.11.5; Proposition 3.4, (ii)], as in the case of the theta monoids [cf.
Corollary 1.12, (iii)], that allows one to decouple the monoids into “purely radial”
and “purely coric” components [cf. discussion of Remarks 1.11.4, (i); 1.12.2, (vi)].

Remark 4.10.3.
(i) The “coricity of F~*F-prime-strips”

~

TSZXN ~ igzxu

discussed in Corollary 4.10, (iv), amounts, in essence, to the “coricity of D" -prime-
strips” 1% 5 DY [ef. Corollary 4.10, (iv)], together with the “coricity of
[various quotients by torsion of] the units O*(—)” of the Frobenioids involved —
cf. [IUTchI], Corollary 3.7, (ii), (iii). In [IUTchIII], this coricity of the units
will play a central role when we apply the theory of the log-wall [cf. [AbsToplII]].
In particular, this coricity of the units will allow us to compare volumes on either
side of the ©*H- © XK links.

gau

(ii) Unlike the units [cf. the discussion of (i)!], the “divisor monoid”, or “value
group”, portion of the Frobenioids involved is by no means preserved by the © -,
Oghi-links! Indeed, this “value group” portion of the ©*#- ©Zk-links may be
thought of as a sort of “Frobenius morphism” — cf. the discussion of Remark
3.6.2, (iii), as well as Remark 4.11.1 below. Alternatively, from the point of view

of the analogy between [complex or p-adic] Teichmiiller theory and the theory of
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the present series of papers, this portion of the ©*#-, © gk -links may be thought
of as a sort of Teichmiiller deformation [cf. the discussion of [IUTchI], Remark
3.9.3, (ii)]. Indeed, the computation of the “volume distortion” arising from this
“arithmetic Teichmiiller deformation” may, in some sense, be regarded as the

ultimate goal of the present series of papers.

(iii) In the context of the discussion of (ii), it is interesting to note that if one

restricts the value group portion of the ©zF:-link — i.e.,

.2
q {qJ }
v =0 Jigj<ix

[cf. Remark 3.6.2, (iii)] — to the label j = 1, then the resulting correspondence

4, = 4,

may be naturally identified with the “identity” — cf. the discussion of Remark
3.6.2, (iii). Put another way, the restriction to the label j = 1 of the Gaussian
distribution may be identified, for instance at the level of realifications, with the
pivotal distribution discussed in [ITUTchl], Example 5.4, (vii). On the other hand, in
this context, it is important to observe that the operation of restriction to various
proper subsets of the set of all labels |F;| fails, in general, to be compatible with the
crucial Ffi- and F}-symmetries of Corollaries 4.5, (iii); 4.6, (iil); 4.7, (ii); 4.8,
(ii) [cf. also the discussion of Remark 2.6.3].

D- +ell NF
ny PO

/ _oxell _ [ 71 _@TLell

n///HTrD_@iellNF

Fig. 4.3: Etale-picture of D-0FINF-Hodge Theaters

Corollary 4.11. (Etale-pictures of Base-O**'"NF-Hodge Theaters) Sup-
pose that we are in the situation of Corollary 4.10, (vi).

(i) Write

D D-@telINE D D-@LelINE D
YT © (n+1)7'[7- ©
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— where n € Z — for the infinite chain of D-OT°'NF-linked D-O*°!NF-
Hodge theaters [cf. Corollary 4.10, (iv), (vi)] induced by either of the infinite
chains of Corollary 4.10, (vi). Then this infinite chain induces a chain of full
poly-isomorphisms

~ ~

3 nph 5 (gl X

[ef. Corollary 4.10, (iv)]. That is to say, “7)®% 7 forms a constant invariant
[cf. the discussion of [IUTchI], Remark 3.8.1, (ii)] — i.e., a mono-analytic core

[¢f.  the situation discussed in [IUTchl], Remark 3.9.1] — of the above infinite
chain.

(ii) If we regard each of the D-OF*" NF-Hodge theaters of the chain of (i) as a
spoke emanating from the mono-analytic core “(_)’DZ” discussed in (i), then we
obtain a diagram — i.e., an étale-picture of D-OT'NF-Hodge theaters — as
in Fig. 4.3 above [cf. the situation discussed in [IUTchI], Corollaries 4.12, 6.10).
Thus, each spoke may be thought of as a distinct “arithmetic holomorphic
structure” on the mono-analytic core. Finally, [cf. the situation discussed in
[IUTchI], Corollaries 4.12, 6.10] this diagram satisfies the important property of
admitting arbitrary permutation symmetries among the spokes [i.e., the labels
n € Z of the D-OT"NF-Hodge theaters].

(iii) The constructions of (i) and (ii) are compatible, in the evident sense,
with the constructions of [IUTchl], Corollaries 4.12, 6.10, relative to the natural
identification isomorphisms (7% 5 (*)C‘D; [cf. Corollary 4.10, (i); the
discussion preceding [IUTchl], Example 5.4] and the operation of passing to the
underlying D-ONF- [in the case of [IUTchI], Corollary 4.12] and D-OF°"'-Hodge
theaters [in the case of [IUTchl], Corollary 6.10].

Proof. The various assertions of Corollary 4.11 follow immediately from the defi-
nitions and the references quoted in the statements of these assertions. ()

Remark 4.11.1.  The ©xK-link of Corollary 4.10, (iii), may be thought of,

(1)
1)

roughly, as a sort of transformation
— cf. the discussion of Remark 3.6.2, (iii). From this point of view, the infinite chain
of the Frobenius-picture discussed in Corollary 4.10, (vi), may be represented as

an infinite iteration
12
(2 )
. * (Z%)Z
(g (%)° )

i = 4

IS
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of this transformation. By contrast, the associated étale-picture discussed in
Corollary 4.11 corresponds to a sort of commutativity involving these “theta expo-

nents”
(l*)Z (Z*)Q (l*)Q

— cf. the “arbitrary permutation symmetries” discussed in Corollary 4.11, (ii). In
this context, it is useful to recall the analogy between the classical Gaussian in-
tegral and the theory of the present series of papers [cf. Remark 1.12.5] — an anal-
ogy in which the “order-conscious” Frobenius-picture corresponds to the carte-
sian coordinate representation of the Gaussian integral, while the “permutation-
symmetric” étale-picture corresponds to the polar coordinate representation of
the Gaussian integral. Finally, from the point of view of the discussion of Remark

q —

1B

4.7.4, the [-torsion that occurs as the index set of the various “gj2’s” that appear

in the Gaussian monoid of each ©*°'NF-Hodge theater may be thought of as a
sort of multiradial combinatorial representation of the distinct “arithmetic
holomorphic structures” corresponding to the various ©*°'!NF-Hodge theaters.

Remark 4.11.2. At this point, we pause to review the theory developed so far
in the present series of papers.

(i) The notion of a @' NF-Hodge theater [cf. [[UTchI], Definition 6.13, (i)] is
intended as a model of conventional scheme-theoretic arithmetic geometry
— i.e., more precisely, of the conventional scheme-theoretic arithmetic geometry
surrounding the theta function at primes of bad reduction € VP2 of the elliptic
curve over a number field under consideration. At a more technical level, a ©@+°INF-
Hodge theater may be thought of as an apparatus that allows one to construct a
sort of bridge between the number field and theta functions [at v € ybad]
under consideration. From a more concrete point of view, this bridge is realized by
the Gaussian distribution — i.e., a globalized version of the theta values

-2
{2 }open
=v <<%

at l-torsion points [cf. Remark 3.6.2, (iii)]. Here, we remark that the term “Gauss-
ian distribution” is intended as an intuitive expression that includes the more tech-
nical notions of “Gaussian monoids” and “Gaussian Frobenioids”. The Gaussian
distribution also plays the crucial role of allowing the construction of the [non-
scheme/ring-theoretic!] O}k -link between distinct ©F!NF-Hodge theaters [cf.
Corollary 4.10, (iii)] — i.e., between distinct models of conventional scheme-
theoretic arithmetic geometry.

(ii) Within a single ©F!NF-Hodge theater, the theory of étale and Frobenioid-
theoretic theta functions developed in [EtTh] is applied to construct a single con-
nected geometric “Kummer theory-compatible theater for evaluation of the theta
function”, whose étale-theoretic realization admits a multiradial formulation [cf.
the theory of §1, especially Corollary 1.12], and whose connectedness allows one
to establish conjugate synchronization [cf. the discussion of Remark 2.6.1]
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between the various copies of the absolute Galois group of the base field at the
various [-torsion points at which the theta function is evaluated. Moreover, this
conjugate synchronization satisfies the crucial property of compatibility with the
]Fl”i-symmetry [cf. the discussion of Remark 3.5.2, as well as Corollaries 4.5,
(iii); 4.6, (iii)] of the underlying D-©¢!-bridge [cf. [ITUTchI], Proposition 6.8, (i)] of
the ©T°'NF-Hodge theater under consideration. Conjugate synchronization plays
an essential role in establishing the coricity of the units [cf. Corollary 4.10,
(iv)] in a fashion which is compatible with both the étale-theoretic — i.e., “an-
abelian” — and abstract monoid/Frobenioid-theoretic — i.e., “post-anabelian”
— representations of the Gaussian monoids [cf. the discussion of Remark 3.8.3].
Here, we recall that the “post-anabelian” representation of the Gaussian monoids
is necessary to construct the ©xk-link of Corollary 4.10, (iii) [cf. Remarks 3.6.2,
(ii); 3.8.3, (i)]. On the other hand, the “anabelian” representation of the Gaussian
monoids will play an essential role when we apply the theory of the log-wall [cf.
[AbsToplll]] in [IUTchIII] [cf. Remark 3.8.3, (ii)]. Another important aspect of the
theory of Gaussian distibutions, at v € V¢, is the canonical splittings of the
monoids involved into “unit” and “value group” components. These splittings
may be thought of, in the context of the Oz -link, as corresponding to the “non-
deformed” [cf. the “coricity of the units”] and “Teichmiiller-dilated” [cf. the
“value group” portion of the Gaussian distribution| real dimensions that appear
in classical complex Teichmiiller theory [cf. the discussion of Remark 4.10.3, (i),
(ii)]. Finally, these splittings will play a crucial role in the theory of log-shells [cf.
[AbsTopllIl]], which we shall apply in [ITUTchIII].

(iii) By contrast, the number fields that appear in the underlying ©NF-
Hodge theater of the ©T*!NF-Hodge theater under consideration [cf. the theory of
[[UTchI], §5] will ultimately, in [IUTchIII], in the context of log-shells, play the
role of relating — via the ring structure of these number fields — X-line bundles
[i.e., “idelic” or “Frobenioid-theoretic” line bundles| to “H-line bundles” [i.e., line
bundles thought of as modules] — cf. the discussion of Remark 4.7.2. Such rela-
tionships are only possible if one considers all of the primes of the number fields
involved [cf. [AbsToplll], Remark 5.10.2, (iv)]. Constructions associated to these
number fields satisfy the property of being compatible with the F/*-symmetry [cf.
[IUTchI], Proposition 4.9, (i)] of the underlying NF-bridge of the ©*°!NF-Hodge
theater under consideration. Unlike the F;**-symmetry discussed in (i), which is
combinatorially uniradial in nature and may be thought of, in the context of the
splittings discussed in (ii), as being associated with the “units”, the F l* -symmetry
is combinatorially multiradial in nature and may be thought of, in the context of
the splittings discussed in (ii), as being associated with the “value groups” [cf. the
discussion of Remarks 4.7.3, 4.7.4, 4.7.5]. On the other hand, [cf. the discussion
of (ii)] the F fi—symmetry satisfies the crucial property of being compatible with
conjugate synchronization — a property which may only be established after
one isolates the prime-strips under consideration from the conjugacy indetermi-
nacies inherent in the global structure of the absolute Galois group of a number
field [cf. Remark 4.7.2]. Put another way, conjugate synchronization may only be
established once the prime-strips under consideration are treated as objects which
are free of any combinatorial constraints arising from the “prime-trees” asso-
ciated to a number field [cf. the discussion of [[UTchI|, Remark 4.3.1]. On the other
hand, one important property shared by both the Ffi— and Ff—symmetries is the
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connectedness of the global objects that appear in the [©°!.-/NF-bridges of] these
symmetries. This connectedness plays an essential role in the bookkeeping opera-
tions involving the labels of the evaluation points [cf. the discussion of Remarks
3.5.2 and 4.5.3, (iii), as well as [IUTchI|, Remark 4.9.2, (i)]. In particular, such
bookkeeping operations cannot be implemented if, for instance, instead of working
with a global number field, one attempts to take as one’s “global objects” formal
products of the local objects at the various primes of the number field under con-
sideration [cf. the discussion of [AbsToplIl], Remark 3.7.6, (v)]. Finally, we recall
that the essential role played by these “global bookkeeping operations” gives rise,
in light of the profinite nature of the global geometric étale fundamental groups
involved, to a situation in which one must apply the “complements on tempered
coverings” developed in [IUTchI|, §2 [cf. Remark 4.5.3, (iii)].

(iv) One way to summarize the above discussion is as follows. The bridge
constituted by the Gaussian distribution of a ©F°"NF-Hodge theater between theta
functions and number fields may be thought of as being constructed by dismantling
those aspects of the “characteristic topography” of the theta functions and
number fields involved that constitute an obstruction to relating theta functions to
number fields. In the case of theta functions, the main obstruction to constructing
such a link to the number field under consideration is constituted by the geometric
dimension of the tempered coverings of elliptic curves [at v € V°*!] on which the
theta functions are defined. This obstruction is resolved by means of the operation
of evaluation at the [-torsion points. Thus, from the point of view of the scheme-
theoretic Hodge-Arakelov theory of [HASurl], [HASurll], one may think of these
[-torsion points as a sort of “rough finite approxrimation” of the tempered coverings
of elliptic curves under consideration [cf. the discussion of [HASurl], §1.3.4]. By
contrast, in the case of number fields, the main obstruction to constructing such
a link to the theta functions under consideration is the “prime-trees” arising
from the global structure of the number field, which give rise to the conjugacy
indeterminacies that obstruct the establishment of conjugate synchronization
[cf. the discussion of (iii) above]. This obstruction is resolved by dismantling the
global prime-tree structure of the number fields involved by working with various
prime-strips labeled by elements € F;* [cf. the discussion of [IUTchI], Remark
4.3.1]. Thus, one may think of these collections of prime-strips labeled by elements
€ F/ as “rough finite approzimations” of the infinite prime-trees associated to
the number fields involved. At a more combinatorial level [cf. the discussion
of Remark 4.7.5], this dismantling process may be thought of as the process of
dismantling the ring structure of F; — which we think of as a “rough finite
approximation” of 7 [cf. [IUTchI], Remark 6.12.3, (i)] — into its additive and
multiplicative components, which correspond, respectively, to the Ffi- and Ffe-
symmetries.

Remark 4.11.3. In the context of the discussion of Remark 4.11.2, it is interesting
to observe that, whereas, from the point of view of the combinatorics of the Ffi-
and F-symmetries, one has correspondences

ol +— m, NF +— KX

— i.e., the ©°-bridge corresponds to the additive Iﬁ‘fi—symmetry, while the NF-
bridge corresponds to the multiplicative Ff—symmetry — at the level of line bundles,
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one has correspondences
ol +—— K, NF «+— H

— i.e., the arithmetic line bundles under consideration are treated multiplicatively,
via monoids or Frobenioids, in the context of the ©°-bridge, while the equivalence
of such X-line bundles with H-line bundles may only be realized in the context of
the global ring structure of the number fields associated, via the theory of [ITUTchI],
65, to the NF-bridge. This “juggling of HH and X” is reminiscent of the theory of
the log-wall developed in [AbsToplIl] [cf., e.g., the discussion of [AbsTopllII], §13]
and, indeed, may be thought of as a sort of combinatorial counterpart to the
“juggling of H and X” that occurs in the theory of the log-wall.

Remark 4.11.4.

(i) From the point of view of scheme-theoretic Hodge-Arakelov theory, the -
torsion points of an elliptic curve may be thought of as a “rough finite approxi-
mation” of the two real dimensions of the underlying real analytic manifold of a
one-dimensional complex torus [cf. the discussion of [HASurl|, §1.3.4]. In scheme-
theoretic Hodge-Arakelov theory, one considers spaces of functions on these [-torsion
points. The two dimensions mentioned above then correspond to a “holomorphic
dimension” and a “one-dimensional deformation of this holomorphic dimension”
[cf. the discussion of [HASurl], §1.4.2]. In the context of the theory of the present
series of papers, we work, in effect, with an elliptic curve which is isogenous to
the given elliptic curve via an isogeny of degree [ — i.e., with “X” as opposed to
“X” — so that we may neglect the “holomorphic dimension” mentioned above and
concentrate instead on the deformations of this “holomorphic dimension” [cf. the
discussion of the Introduction to [EtTh]]. In particular, the various possible values
at the various [-torsion points at which the theta function is evaluated in the theory
of the present series of papers may be thought of as various possible deformations
of the holomorphic structure, while the specific values of the theta function may be
thought of as a specific deformation of the holomorphic structure. Here, we note
that the parameter “0 # t € LabCuspi(—)” that indexes these values — which,
like the tangent space to the original elliptic curve, is linear which respect to the
group structure of the elliptic curve — descends naturally [especially in the context
of ONF-Hodge theater!] to the parameter “j € F;*” — which may be thought of as
the “square (F,*)®” of F/°, hence, like the square of the tangent space of the elliptic
curve, which is naturally isomorphic to the tangent space to the moduli space of
elliptic curves at the point determined by the elliptic curve in question, is quadratic
in its dependence on the linear group structure of the elliptic curve. Finally, this
point of view concerning the values of the theta function is reminiscent of the point
of view of Remark 3.6.2, (iii), in which we observe that, in the context of the © 3k -
link, these values of the theta function may be thought of as a sort of “deformation
between the identity and a Frobenius morphism”. The theta function involved may
then be thought of as a sort of continuous version [i.e., as opposed to a “rough
finite approximation”] of such a deformation.

(ii) From the point of view of the analogy between the theory of the present
series of papers and p-adic Teichmiiller theory [cf. [AbsToplIIl], §I5], the portion of
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the infinite chain of ©*#-links of Corollary 4.10, (vi), parametrized by n <0

@l (n_l)HT@iellNF Q@XM nHTeiellNF Xk oxm OHT@ie“NF

may be thought of as corresponding to the canonical liftings of p-adic Teichmiiller
theory. That is to say, each ©F°INF-Hodge theater — which one may think of as
representing the conventional scheme theory surrounding the given number field
equipped with an elliptic curve — corresponds to a hyperbolic curve in posi-
tive characteristic equipped with a nilpotent ordinary indigenous bundle [cf. the
discussion of [AbsToplII], §I5]. The theta functions that give rise to the ©*#-links
may be thought of as specifying the specific canonical deformation [cf. the discus-
sion of (i)] that gives rise to this “canonical lifting”. The canonical Frobenius
lifting on this canonical lifting may be thought of as corresponding to the theory
to be developed in [IUTchIII]. From this point of view, the passage

theta functions, number fields ~» Gaussian distributions

[cf. the discussion of Remark 4.11.2] effected in the theory of the present series
of papers presented thus far — i.e., at a more concrete level, the passage, via
Hodge-Arakelov-theoretic evaluation, from the above semi-infinite chain to
the corresponding semi-infinite chain

X

oxk e oxk e OxH (C] e
gau (nfl)%T@i UNF gau nHT@i UNE gau o gau OHT@:E INEF

of Ok -links — may be thought of as corresponding to the passage

MFV-objects ~» Galois representations

in the case of the canonical indigenous bundles that occur in p-adic Teichmiiller
theory — cf. the discussion of [pTeich|, Introduction, §1.3, §1.7; the discussion in
[HASurl], §1.3, §1.4, of the relationship between such canonical indigenous bundles
in the case of the moduli stack of elliptic curves and the scheme-theoretic Hodge-
Arakelov theory of [HASurl], [HASurll]. Put another way, it corresponds to the
passage from thinking of the “canonical lifting” as a curve equipped with the MFV -
object constituted by a canonical Frobenius-invariant indigenous bundle to thinking
of the “canonical lifting” as a curve equipped with a canonical Galois representation,
i.e., a canonical crystalline representation [that is to say, a representation that
happens to arise from an MFY-object] of the arithmetic fundamental group of the
generic fiber of the curve into PG Ly(Zy).

(iii) The analogy between the theory of the present series of papers and p-adic
Teichmiiller theory may also be seen, at a more technical level, in the following
correspondences between various aspects of the theory presented thus far in the
present series of papers and various aspects of the theory of [CanLift], §3 [cf. also
Remark 4.11.5 below]:

(a) The discussion of (ii) above is reminiscent of the important role played by
the canonical Galois representation in the absolute p-adic anabelian
theory of [CanLift], §3 [cf. the proof of [CanLift], Lemma 3.5].
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(b) In light of the important role played, in the present series of papers,

by mono-theta-theoretic cyclotomic rigidity [which was reviewed in
Definition 1.1, (ii); Remark 1.1.1], it is perhaps of interest to recall [cf.
Remark 1.11.6] the important role played by cyclotomic rigidity isomor-
phisms in the theory of [CanLift], §3, via the theory of [AbsAnab], §2
[cf., especially, [AbsAnab], Lemmas 2.5, 2.6]. On the other hand, at the
level of direct correspondences between the theory of the present series
of papers and p-adic Teichmiiller theory, it is perhaps better to think
of mono-theta-theoretic cyclotomic rigidity as corresponding to the local
uniformizations arising from the canonical indigenous bundle [cf. the
discussion of Remark 3.6.5, (iii)].

(¢) The important role played, in the present series of papers, by the “two-

dimensional symmetry” constituted by the Ff“i- and F;-symmetries
— whose two-dimensionality may be thought of as corresponding to the
two real dimensions of the complex upper half-plane [cf. the discussion
of [IUTchI], Remark 6.12.3, (iii)] — is reminiscent of the important role
played in the theory of [CanLift], §3, in effect, by the wvanishing of the
zero-th group cohomology module

H°(Ad(-))

of the canonical Galois representation associated to the canonical indige-
nous bundle — cf. the various geometric conditions over the ordinary
locus and at the supersingular points of the mod p representations con-
sidered in [CanLift], Lemma 3.2. That is to say, the Ffi—symmetry may
be regarded as corresponding to the unipotent monodromy over the

ordinary locus
1 = N
— I,
0 1

— which is isomorphic to the additive group underlying [F, — while
the Iﬁ‘l*-symmetry may be regarded as corresponding to the toral mon-
odromy at the supersingular points

o)) =

— which is isomorphic to the multiplicative group F S and arises from ex-
tracting a (p — 1)-th root of the Hasse invariant. Moreover, the “intuitive,
conventional” nature of the theory over any single connected component
of the ordinary locus — a theory which allows one, for instance, to con-
struct g-parameters — is reminiscent of the uniradial nature of the ]Ffi—
symmetry, while the fact that supersingular points lie simultaneously on
irreducible components obtained as closures of distinct connected com-
ponents of the ordinary locus is reminiscent of the multiradiality — i.e.,
compatibility with simultaneous execution in distinct Hodge theaters —
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of the F/*-symmetry [cf. the discussion of Remark 4.7.4]. The above dis-
cussion is summarized, at the level of keywords, in Fig. 4.4 below.

F,'*-symmetry F-symmetry
additive multiplicative
uniradial multiradial

monodromy over the monodromy at the
ordinary locus supersingular points

Fig. 4.4: Correspondence of symmetries with p-adic Teichmiiller theory

(d) The important role played, in the present series of papers, by conjugate
synchronization at the various evaluation points of the theta function
— which gives rise, in the form of the Gaussian distribution, to the
links between the various OF°INF-Hodge theaters in the second semi-
infinite chain that appeared in the discussion of (ii) — is reminiscent of
the important role played in the theory of [CanLift], §3, by the description
given in [CanLift], Lemma 3.4, of the first group cohomology module

H'(Ad(-))

of the canonical Galois representation associated to the canonical indige-
nous bundle — whose “slope —1 portion” may be thought of as governing
the “links” between the “mod p™” and “mod p"”T'” portions of the canon-
ical Galois representation, as it is considered in the proof of [CanLift],
Lemma 3.5. Here, we note that this description may be summarized, in
effect, as asserting that the slope —1 portion in question is, up to tensor
product with an unramified Galois representation, isomorphic to a direct
product of 3g — 3 + 1 copies of F,(—1) [where the “(—1)” denotes a Tate
twist] — a situation that is reminiscent of the {* synchronized copies of
cyclotomes that occur in the context of the evaluation of the theta function
considered in the present series of papers. Moreover, the deformations
of the canonical Galois representation parametrized by this module
“HY(Ad(-))” may be thought of as corresponding, in the theory of the
present series of papers, to the “independent Aut(G,)-indeterminacies”
[i.e., for v € V""] that occur at each label € F/* when one consider multi-
radial representations of Gaussian monoids— cf. the theory of [[UTchIII],
§3; [IUTchIII], Remark 3.12.4, (iii).

[Here, we note that, in fact, the various “—1’s” in (d) should be replaced by “1’s”
— cf. Remark 4.11.5 below.] Finally, we observe, with regard to (d), that the
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description in question that appears in [CanLift], Lemma 3.4, may be thought of as
a reflection of the ordinarity [i.e., as opposed to just admissibility] of the positive
characteristic nilpotent indigenous bundle under consideration, hence is reminiscent
of the discussion of [AbsToplIIl], Remark 5.10.3, (ii), of the correspondence between
ordinarity in p-adic Teichmiiller theory and the theory of the étale theta function
developed in [EtTh].

Remark 4.11.5. We take this opportunity to correct a few notational errors
in the statement of the condition (f,,) of [CanLift], Lemma 3.4, which, however,
do not affect the proof of this lemma in any substantive way. The subquotient
“G*(M)” (respectively, “G1") should have been denoted “G~2(M)” (respectively,
“G'"). The subquotient G=2(M) (respectively, G!) is isomorphic to the tensor
product of an unramified module with a Tate twist F,(—2) (respectively, F,(1)).
That is to say, there is a sign error in the Tate twists stated in (f,,). Finally, in
order to obtain the desired dimensions over F,, one must replace the cohomology
module

“M L HY (Ao, Ad(Vi)))”

by the submodule of this module consisting of elements whose restriction to each of
the cuspidal inertia groups of A xios is upper triangular with respect to the filtration
determined by the nilpotent monodromy action on Vg, [i.e., by the cuspidal inertia
group in question]. That is to say, an elementary computation shows that the
operation of restriction to this submodule has the effect of lowering the dimension
of G™2(M) from 3g — 3+ 2r to 3g — 3 + r, as desired.
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